Key-point-analysis and explanations for quantitative text analysis

Daniel Schroter and Hannes Schroter and Yuyin Lang
daniel.schroter@tum.de
hannes.schroter@tum.de

yuyin.lang@tum.de

Abstract

An increasing fraction of public debates takes
place online. The ability to automatically cap-
ture key ideas and opinions in online communi-
cation can be a game changing for politics and
businesses. Argumentative texts can often be
reduced to some core ideas, called key points.
Our work addresses the research question pre-
sented in the KPA shared task 2021 of match-
ing arguments to key points. We propose two
different models. The first model combines a
transformer based denoising autoencoder (TS-
DAE) with a siamese neural network. The sec-
ond one enriches a transformer based siamese
neural network with additional features like
part-of-speech tags. Our evaluation shows and
performance improvement of 2% to 5% com-
pared to the best performing model in prior re-
search. On the other hand those models are
characterised by a highly complex architecture
and low interpretability. We implement differ-
ent methods to answer why certain argument
key point pairs receive a high similarity score.
Furthermore, we propose a simple approach
on applying LIME to siamese neural networks
(SNNs) which is novel in literature. Hence,
our twofold contribution to research comprises
the presentation of new models for solving the
KPA shared task and a new approach of apply-
ing LIME to SNNs.

1 Introduction

With the rise of the internet and social media plat-
forms like Twitter and Facebook, an increasing
fraction of public discussion, debates and the ex-
pression of opinions takes place online. The abil-
ity to automatically capture central ideas, identify
key opinions and summarize core topics present
in the constant stream of online communication
would be a valuable resource for decision makers
in politics and businesses. Deciding about the de-
velopment of a certain product, analysing trends
in society like an increasing consciousness about
sustainability or capturing the impact of political

campaigns can be game changing use cases for or-
ganisations (Bar-Haim et al., 2020). Hence, strong
research streams have developed in the last couple
of years dealing with computational argumentation
(Lawrence and Reed, 2020), opinion analysis (Levy
et al., 2018) and semantic textual similarity (Agirre
et al., 2013). One part of the challenge has been
presented at the EMNLP 2021, a conference on
empirical methods in natural language processing,
described as Key Point Analysis (KPA shared task).
The problem builds upon the work of Bar-Haim
et al. (2020) and aims at summarizing arguments
with key points that capture the essential informa-
tion of the argument. As a first step, solutions are
required to appropriately match arguments to key
points that are already given. The ArgKP dataset
(Bar-Haim et al., 2020) contains approximately 24k
argument key points pairs in 28 controversial top-
ics like “Home Schooling should be banned”. The
test dataset contains 3 additional topics that are
not present in the original training dataset. The
arguments are a subset of the IBM-Arg-30kArgs
dataset, and the key points have been created by a
professional debater and annotated to the matching
arguments. Hence the dataset contains argument
and key point pairs together with a label if they
match. We present two siamese neural network
models that achieve a precision that is 2% to 5.7%
higher compared to the best performing model in
prior research with respect to our evaluation. Our
first model is characterised by the combination of
an unsupervised pretraining method called trans-
former based denoising autoencoder (TSDAE) and
a siamese neural network. The second model is
characterised by a more complex siamese neural
network architecture that is enriched by manually
engineered features like part-of-speech tags. Both
models rely on the sentence transformer architec-
ture Roberta. However, such models are charac-
terised by a complex deep learning architecture
leading to results that are difficult to explain. With



the power of such deep learning models the de-
mand for interpretability increases. Apart from
the plain predictions, in many use cases some ra-
tional behind a prediction is required to answer
why a model made a certain decision. Research
on the explainability of siamese neural networks
seems to be emerging but is still rather thin. Conse-
quently, we apply different explanation techniques
and propose a simple but novel idea on how local
interpretable model-agnostic explanations (LIME)
can be implemented in the case of siamese neu-
ral networks. Our contribution to literature is (1)
the combination of TSDAE with a siamese neural
network, (2) a siamese neural network architecture
incorporating manually engineered features and (3)
a novel approach on applying LIME to siamese
neural network for the stake of explainability.

2 Prior Research

The KPA shared task basically builds upon the
work and the dataset of Bar-Haim et al. (2020)
who originally presented the problem of match-
ing argument to corresponding key points. Within
a broader context the task is associated with the
more general research stream of semantic textual
similarity. Since the KPA shared task was pub-
lished as a competition there have been 18 different
teams proposing solutions for the problem. Fried-
man et al. (2021) provide an overview about the
different solution concepts. The evaluation metric
is mean average precision (Map). The details of
the evaluation procedure are described in Friedman
et al. (2021). The difference between the strict
(Map strict) and the relaxed (Map relaxed) score is
that in the first one undecided pairs are counted as
not matching whereas in the latter they are counted
as matching. The best ranked approach in the com-
petition was presented by Alshomary et al. (2021).
They propose a siamese neural network architec-
ture and use a contrastive loss function to learn
embedding representation of arguments and key
points where a matching pair is close to each other.
They finetuned a Roberta model for 10 epochs and
a batch size of 32. They report a Map strict of 0.84
and a Map relaxed of 0.96. Kapadnis et al. (2021)
propose a different approach and ranked 5th on the
competition. They train a binary- classifier where
the arguments and key points are concatenated and
jointly fed into a transformer. In contrast to Al-
shomary et al. (2021) there is only one sentence
embedding received by the transformer model rep-

resenting the argument and key point jointly. They
further enriched the sentence embedding by addi-
tional feature like part-of-speech tags, dependency
tags and TF-IDF. Furthermore, additional datasets
like the STS dataset and the IBM Arg30k dataset
were used to finetune different transformer models.
They report a Map strict of 0.872 and a Map relaxed
of 0.966. Transformer models by nature have a rel-
atively complex architecture. Consequently, results
are not easy to explain and interpret. There seems
to be a research gap in explainability methods for
siamese neural networks. The research stream is
emerging and different approaches have been pub-
lished recently. Utkin et al. (2019) suggest a new
method for explaining siamese neural networks that
is based on an autoencoder. The key idea is to com-
pare the explained example with a prototype at the
embedding layer and then reconstruct the features
of the embedding layer with an autoencoder. Robin-
son (2020) presents an interpretable visualization
algorithm for siamese neural networks. The algo-
rithm identifies differentiating and similar features
which are used to project the dataset into a lower
dimensional space. Interpretability is implemented
by applying parametric interpretability methods
like SHAP. We haven’t found prior work that specif-
ically focuses on the explanation of siamese neural
networks for textual data. Therefore our work can
be seen as a first contribution to this research gap.

3 Model

Our primary goal in model development was to
achieve a superior performance on the KPA shared
task of matching arguments to key points. The core
element in prior research and the models we pro-
pose are transformer models. Transformer models
can be used to represent the semantic meaning of
words or sentences in a high dimensional space
such that sentences with a similar meaning are lo-
cated close to each other. We focused on three main
pillars of development: (1) data used to pretrain and
finetune the model, (2) unsupervised pretraining to
tailor the general pretrained sentence transformer
models to the specific domain of the dataset at hand
and (3) supervised finetuning to finally predict a
similarity score between matching arguments and
key point.

3.1 Data

Common transformer models like BERT have been
pretrained on a large and general corpus of text. To



fit them to the specific language domains present
in the topics of the KPA shared task some finetun-
ing processes are required. A first logical option
to finetune the model is to use the argument and
key points from the original dataset. However, lit-
erature also provides alternative datasets that have
been created for similar tasks like semantic textual
similarity and semantic representation (Cer et al.,
2017). The STS dataset provides 8020 labeled
pairs of english sentences and their corresponding
similarity score (Kapadnis et al., 2021). The IBM
30k dataset provides argument topic pairs together
with a similarity score (Hovy et al., 2013). In prior
work the use of the STS and IMB30k dataset led
to a significant performance increasement on the
KPA shared task (Kapadnis et al., 2021). Since
both datasets are labeled, they can be used for un-
supervised pretraining and supervised finetuning.
However, labeled training data is not a prerequisite
for finetuning sentence transformer models. We
have furthermore created our own text corpus con-
taining 10k sentences from the specific topics of the
KPA task. They have been automatically collected
by crawling newspaper articles on the internet.

3.2 Unspuervised Pretraining

There are several ways of training a transformer
model in the absence of labeled training data. The
original pretraining of the BERT family was pre-
formed by masked language modelling. The idea
is to mask out different words in a sentence and
train the model by predicting the probability of the
missing word. Other state-of-the-art methods spe-
cialising on the unsupervised learning of sentence
embeddings are simple contrastive learning of sen-
tence embeddings (SimCSE) (Gao et al., 2021) and
semantic retuning with contrastive tension (CT)
(Carlsson et al., 2021). Wang et al. (2021) recently
proposed another promising unsupervised domain
adaption approach called transformer based denois-
ing autoencoders (TSDAE). The idea is to create a
damaged version of a sentence by modifying char-
acters, words or adding noise. The damaged sen-
tence is fed into an encoder which learns the en-
coding of this sentence. A decoder is trained to
reconstruct the original sentence afterwards.

3.3 Supervised Finetuning

In order to solve the final argument key point match-
ing a supervised model is trained to learn a function
predicting the similarity between a specific argu-
ment key point pair. Siamese neural network mod-

els have been specifically designed for similarity
learning tasks. The architecture is capable of learn-
ing similarity scores for pairs of inputs but also
to differentiate between different pairs of inputs.
Our experiments with other architectures like clas-
sification models could not reach the same perfor-
mance levels. Subsequently we focused our work
on Siamese Neural Networks.

3.4 Siamese Neural Network with contrastive
learning for semantic textual similarity

The basic idea of siamese networks is to have two
identical parts of the model where each part is ded-
icated to one of the inputs. In our case these parts
are two transformer models (Roberta) that learn
sentence embeddings for each of the sentences. In
the case of BERT, the input sentences are projected
into a 768-dimensional embedding space. To make
sure that both transformer models process the input
sentences in the same way, weights are shared be-
tween the transformer layers of the model. Conse-
quently, one receives two datapoints in the learned
embedding space where distance measures can be
applied to calculate the similarity between both sen-
tences. Similarity is calculated by using the cosine
distance. A contrastive loss function guides the
training process in a way such that matching pairs
are close to each other whereas non-matching pairs
a far from each other (Hadsell et al., 2006).

L = yd* + (1 — y)maz(margin — d,0)?

The formula shows the contrastive loss function
implemented in our models: y is the true label of an
argument key point pair (1=matching, O=not match-
ing), margin is a hyperparameter for the minimum
distance of a non-matching pair of inputs, and d is
the distance measure between both sentence em-
beddings (cosine distance). In case of a matching
pair the model minimizes the squared distance be-
tween them. In case of a non-matching pair the
model minimizes the squared margin subtracted
by the distance. Intuitively the transformer models
receive the required feedback for learning the em-
bedding representation of the arguments and key
points in a way that matching pairs have a small
cosine distance whereas non-matching pairs have a
large one.

3.5 Siamese Neural Network with
Part-of-Speech feature

The idea for this model is mainly a combination of
different approaches presented by Kapadnis et al.
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Figure 1: Architecture of SNN with additional Part-of-
Speech feature

(2021) and Alshomary et al. (2021). The architec-
ture of the model is again a siamese neural network.
Additionally, the input to the model is enriched by
manual engineered features like part-of-speech tags
that are expected to capture some structural infor-
mation of the arguments beyond the raw sentence
embeddings provided by the transformer layers.
Figure 1 visualizes the core idea of this approach.
For each of the inputs the additional features are
calculated separately. The sentences are then pro-
cessed through a transformer layer and a pooling
layer to receive sentence embeddings. On the next
stage the additional features are added to the sen-
tence embeddings. A fully connected layer allows
the model to learn the importance of each feature
by finding appropriate representations in the em-
bedding space. The training procedure follows a
similar logic as described above by following a
contrastive learning approach. It is important to
note that the transformer layers are finetuned in an
independent step because it was not possible in the
backpropagation step to differentiate between the
additional feature added after the pooling layer and
the features represented by the sentence embed-
dings without rebuilding the original BERT archi-
tecture. The final model uses part-of-speech tags
as additional features.

3.6 Final Models and Results

Considering the number of different configurations
with respect to datasets, unsupervised pretraining
methods and supervised training methods we will
focus on the presentation and discussion of the two
models with highest performance. Both models are
trained only on the original KPM dataset and both
models built upon the Roberta architecture. The
first configuration is called TSDAE SNN where

Model Map strict Map relaxed
TSDAE SNN 0.921 0.967
SNN POS 0.912 0.970
SNN Benchmark 0.864 0.950
ENIGMA Benchmark  0.844 0.931

Table 1: Evaluation of model performance

the transformer model was initially pretrained with
a transformer based denoising autoencoder and
the similarity scores are learned with the simpler
Siamese Neural Network guided by contrastive
loss. No additional features are added. The second
model is called SNN POS. No unsupervised pre-
training methods has been implemented but instead
the more complex siamese neural network is used
together with part-of-speech tags. Table 1 shows
the results.

With respect to the comparability of the result it
is important to note that results of SNN Benchmark
and ENIGMA Benchmark differ from the ones re-
ported by Kapadnis et al. (2021) and Alshomary
et al. (2021). Both groups published their code and
the results shown in the table are the ones we re-
ceived by reproducing their models. It is important
to note that in the KPA shared task the final eval-
uation was performed by the publishing team and
results were considerably lower in Friedman et al.
(2021). Since our models were only evaluated by
ourselves it is possible that reported results could
change if they are subject to the official evaluation
procedure. The results of Alshomary et al. (2021)
with their siamese neural network model can be
seen as a benchmark, as they performed best in the
KPA shared task competition. Compared to the
SNN Benchmark the SNN POS achieves a 4.8%
performance improvement in Map strict and a 2%
improvement in Map relaxed. The TSDAE SNN
achieves a 5.7% improvement on Map strict and a
1.7% improvement on Map relaxed. Whereas TS-
DAE SNN scores higher on Map strict, SNN POS
scores higher on Map relaxed. Both models show
a significant performance improvement compared
to all models that have been presented in the KPA
shared task.

4 Discussion

We found strong evidence that unsupervised pre-
training lead to a significant performance increment
on the task at hand. The transformer based denois-
ing autoencoder lead to better results compared to



other pretraining methods like masked language
modelling supporting the findings of Wang et al.
(2021). Furthermore, it seems that Siamese Neural
Networks are a superior architecture in semantic
textual similarity settings compared to our exper-
iments with classification models. With respect
to the SNN POS model we found evidence that a
significant part of the performance increment origi-
nates from hyperparameter tuning and is not only
based on the architecture. Literature claims that
transformer models like BERT are prone to over-
fitting issues (Sun et al., 2019). We have seen this
problem throughout the hyperparameter tuning pro-
cess and tackled it by finetuning the transformer
models only for three epochs. It should be pointed
out that, the topics in the test dataset are differ-
ent from those in the training data. Consequently,
extensive finetuning on topics in the training data
can be a reason for worse generalisation on unseen
topics. The SNN POS architecture seems to be
promising, however it depends highly on the qual-
ity of the manually engineered features. It would be
interesting to experiment with more complex fea-
tures like TF-IDF as additional input to the model.
In terms of performance the TSDAE SNN shows
slightly better results and is the simpler model. Fol-
lowing Occam’s Razor, we will evaluate this model
with different explainability methods.

5 Explainability

To understand how the developed model can be
explained it is important to shortly recapture how
the model works. The model predicts the simi-
larity between arguments and key points. Hence
the predicted value is a similarity score depending
on the two input parameters: argument and key
point. When employing state-of-the-art explain-
ability techniques it becomes evident that these
similarity scores can neither be clearly labelled as
regression task nor as a classification task. The
predicted score has no global meaning, as it would
have in a typical regression task. The prediction
of the market values of houses based on a set of
input features can be interpreted more easily. By
applying explainability techniques we can calculate
the importance and contribution of certain features
towards the predicted market value. In our case the
predicted similarity score also depends on the two
input parameters. But the score itself only receives
its meaning in combination with the specific input-
pair. It describes how the inputs are related to each

other similarity-wise. So, it does not become clear
in first place how a certain feature within the argu-
ment contributes to a high similarity score, because
it depends on the specific features on the key point.
Although we try to assign arguments to certain key
points, the model cannot be labelled as a typical
classification task, because we do not predict a cer-
tain class label. Instead, the class (key point) is part
of the input parameters, which is usually not the
case for classification tasks. However, those char-
acteristics are typical for Siamese Neural Network
and the application of explainability techniques for
Siamese Neural Networks is a small and young
research field (see section 2). Hence the question
arises how to apply explainability techniques for
Siamese Neural Networks. In the following we ex-
amine some explainability techniques and how they
need to be adjusted to explain our SNN. Within the
underlying case this leads to the question: Why
specific argument key point pairs are similar or
dissimilar? Some of the modifications can be trans-
ferred towards explainability of SNN in general
and should be considered as one of the major con-
tributions of this paper.

5.1 Leave one Out — Permutation Technique

Lei et al. (2017) introduced a methodology called
Leave-one-covariate-out or LOCO to assess the im-
portance of variables for predictive models. As
proposed by (Lei et al., 2017) one variable is left
out and then the model is refitted with the reduced
feature space. The differences in the original model
error and the new model error then leads to a score
representing the importance of the left-out variable.
In our case we have a model that can handle vari-
ous sizes within the input variables. Hence, we can
apply this idea without refitting the model again.
Therefore, we iteratively leave out the words within
the argument and analyse the difference in the re-
sulting similarity score with respect to a specific
key point. Thereby we gain an idea about the con-
tribution of each word towards the similarity score.

5.2 LIME - Local interpretable
model-agnostic explanations

LIME is a methodology to explain predictions lo-
cally, by training a simple, interpretable model.
The basic idea is that complex models like deep
neural networks can deliver great advantage and
model complex dependencies. Those dependen-
cies might not be representable by simpler inter-
pretable models. However, for a specific prediction



it is possible to train a simpler, interpretable model
to explain a specific prediction locally (Ribeiro
et al., 2016). Thereby the input feature vector is
permutated, which creates a new dataset that is
similar to the original input vector. Then an inter-
pretable model is trained on the new dataset trying
to predict the corresponding labels (Molnar, 2019,
p. 168f). As pointed out previously Siamese Neural
Networks cannot be clearly assigned to a regression
or a classification task. Consequently, the question
arises of which local interpretable model to use
to approximate local predictions. In the following
we show how to apply LIME to SNNs. Our ap-
proach builds upon the fact that LIME is a local
explainability methods. In other words it aims at
explaining why the model predicts a certain simi-
larity score for a specific argument key point pair.
The similarity score predicted by the SNN has a
value range from O to 1. Since LIME is a local
method, we keep one part of the input (key point)
fixed. We can now interpret the local problem as
a classification task with O representing dissimilar-
ity and 1 representing similarity to the fixed key
point. In a second step we create permutations
of the argument only and receive a local classi-
fier that explains the feature importance of each
token in the argument for the similarity score to
the respective key point. Note that the approach is
symmetric which means that we can also fix the
argument and explain the feature importance of the
tokens in the key point. Figure 2 shows the result
for an argument key point pair. The corresponding
key point is: “The US has a good economy/high
standard of living”. The orange terms contribute
positively to the similarity score, whereas the blue
terms contribute negatively to the similarity score.
The intensity of colour increases with an increasing
contribution of the term. The outcome of the clas-
sifier shows that the model considers words like
income, richest and production important for a high
similarity score to the respective key point, even
though those words are not explicitly present in the
key point. The proposed approach of reformulat-
ing SNN predictions as a local classification model
by keeping one part of the input fixed is novel in
literature and is expected to generalize on SNNs in
different domains like face recognition. Hence, we
strongly encourage future research on the proposed
idea as it provides a simple approach of applying
LIME to Siamese Neural Networks.

Text with highlighted words

The United States is undoubtedly the richest country that
exists, its iliéome is really high and higher than that of any
other country, apart from being one of the main productive
countries on the planet.

Figure 2: LIME applied to a specific argument. High-
lighted words contribute the similarity score. Corre-
sponding key point: "The US has a good economy/high
standard of living"

5.3 Shapley Values

The basic idea of shapley values is to calculate
the marginal contributions of each feature value to-
wards the resulting score. Thereby game-theoretic
techniques are employed, where the prediction is
the “payout” and the feature values act as “players’
contributing to it. For a more depth introduction
to shapely values, the reader is referred to Mol-
nar (2019, p. 177f). The Shapely values provided
us with the ability to take a different perspective
on the explanation part of our model. So far, we
have analysed how important certain tokens of a
specific argument are for the similarity to a spe-
cific key point. But what are the most important
terms contributing to a high similarity score for a
certain key point? In other words, we would like
to know the importance of the tokens across all
argument (within a certain topic) for the similarity
to a specific key point. Therefore, we average the
shapely values across all arguments for a specific
key point. Figure 3 shows the terms that contribute
most towards a high similarity score with the key
point: “Routine child vaccinations, or their side
effects, are dangerous”. Terms like diseases, virus,
deadly are highly important. Thereby we get an
understanding of what terms an argument would
need to have in order receive a high similarity score
with the investigated key point.

’

6 Conclusion

We have built several models by introducing ad-
ditional features or shifting the language models
more towards our specific domain by applying un-
supervised pretraining methods like TSDAE. The
best performance across Map strict and Map re-
laxed was achieved by the TSDAE SNN. With re-
spect to the evaluation possibilities available our
model achieved a significant performance increase-
ment compared to the best ranked approach in the
KPA shared task. We observed that BERT Trans-
formers are likely to overfit, which must be as-
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Figure 3: Most contributing terms to a high similarity
score with the key point: "Routine child vaccination, or
their side effects, are dangerous"

sessed carefully. With respect to explainability it
was surprising that only little research exists deal-
ing with Siamses Neural Networks. The state-of-
the-art explainability techniques require some mi-
nor changes to work with SNN. Especially LIME
is not directly applicable. Hence, we introduced
a method that enables the training of local, inter-
pretable models for Siamese Neural Networks by
reformulating the predictions as a local classifica-
tion model. We strongly encourage future research
on the proposed idea since it is much simpler com-
pared to prior research and is expected to generalize
on other domains of SNNs.
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