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Abstract

In serial supply chains, humans tend to show irrational behaviour leading to high cost. The beer
distribution game is often taught in management classes to demonstrate the bullwhip effect - a
phenomenon describing that orders from the supplier tend to have a higher variance than sales
to the buyer. This distortion leads to fluctuations in inventory levels, causing unnecessary high
costs. The optimal ordering policy is already known, but unfortunately, humans usually tend to
show different behaviour. Hence, we investigate whether reinforcement learning can derive
better ordering policies. Thereby the co-players of our intelligent agent either act randomly,
optimally or human-like (Sterman formula, 1989). So far, mainly action-value reinforcement
learning algorithms have been implemented to solve the beer distribution game. The game is
originally defined as a discrete setting (discrete order quantities), which might be the reason
that policy-gradient algorithms have not been considered yet. However, in many economic
situations, a continuous version of the game is applicable. The ordered quantities, for instance,
are so high, that simply rounding them has no major economic impact. Policy-gradient methods
have features that can deliver a valuable contribution to research. They can be easily extended
from one-dimensional decision making to multi-dimensional decision making. Hence, they can
be used to improve supply chains trading multiple items. We create a discrete and continuous
game environment that allows a simple experimentation with reinforcement learning
algorithms. We further implement the policy-gradient methods REINFORCE and Deep
Deterministic Policy Gradient (DDPG). Within this study, we show that they perform on the
same level as the current state of the art action-value approaches. Thereby we create a starting

point for future research with policy-gradient algorithms in serial supply chains.



Table of Contents

N o111 Tod SRR OPRR ii
LI 0] (o) O] 41 (=] £SO OPR R 1\
LISE OF FIGUIES ...ttt sttt et e st e et et eebeenbeeneeeneene e v
LISE OF TaDIES....cee ettt e sttt e e reenreenee s Vi
LiSt OF ADDIEVIALIONS........oviiiiieiicise ettt vii
R 1 oo [0 Tox 1 o] ISP 8
2 The Beer DiStriDULION GaME .....c..cviiiiiiiiieiiiesieiee s 10
3 LITErature REVIEW ......oviiiiiieiiieiie et ettt bbb 12
3.1 Current State OF the AT .....oieeeee et 12

K T8 © [V g O] 1 ¢ o0 11 To o SRR 14

4 TheoretiC INTrOUUCTION ........cii ettt esre e e aneenres 15
4.1  Introduction to Reinforcement Learning ..........ccooevererininiierienienesesesesesesee e 15
4.2 Policy-gradient algorithms ..........cccooeiieii i 18
421  REINFORCE ...ttt sttt e e e 19
4.2.2  Deep Deterministic Policy Gradient .............ccccooveviiiiiiieie e 21

5  EXPErimental SELUD .....cvoiveiiicie ettt 26
5.1  Algorithmic KeY COMPONENTS.........ccooiiiiiiieii et 26
5.2 Our experimental frameWOrK...........cccoiiiiiiiiiie s 28
5.3  Training and EVAlUALION PrOCESS ........cceiirieririeieniesie sttt 29

6 NUMEIICAI RESUILS ..ottt e st e nreenne e 31
6.1 Discrete REINFORCE algorithm ..........cccoooiiiiiiiiiiieeeee e 32
6.2 CONLINUOUS POIICIES ....vviiiiieiie sttt ettt e et e et e e e s e e nree s 35
6.2.1  Reinforce with Gaussian POIICY .........ccocieiiiiiii i 35
6.2.2  Deep Deterministic Policy Gradient ...........cccoovvviiieiiie i 36

6.3  Benchmarks from literature and comparison of algorithms..............cccccooviii e 36

A O o [ o o ST 39
L E =T =] 0TSSR 41
FN AN o] 011 1o | RO PR PR PRRPO 44
B U ADPENGIX <.ttt bbbttt bbbttt e 44
(O Y o] 1= 1 o | GO P TSP 45

[N o] 1= 10 [ GRS PTRRT 45



List of Figures

Figure 1: Beer Distribution Game Overview (Retrieved from:

https://beergame.opexanalytics.com/#/ , 10.07.2020) .........ccoovririieeiieieieie s 10
Figure 2: The agent-environment interaction in an MDP, Sutton and Barto (2018, p.48) ...... 16
Figure 3: Software Architecture of the Experimental Framework.............ccccoovvvveveiicinennennn, 29
Figure 4 Training process of the REINFORCE-Sterman SEtup ..........ccccevvereiieeseereseesneseeenns 33

Figure 5: Cost reduction and mean of order quantities during the training process ................ 34


https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561244
https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561244
https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561245
https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561248

Vi

List of Tables

Table 1: Cost structure and base StoCK 1eVelS...........coooiiiiiiiii e, 31
Table 2: Performance of the discrete REINFORCE algorithm............cccccooeiiiiiiniiicieiee, 33
Table 3: Performance of algorithms with continuous action SPace ...........ccccceveevvereeiecinennnn 36

Table 4: Performance comparison with co-players following the base stock (bs) policy........ 37

Table 5: Performance comparison with co-players following the sterman formula................ 38



List of Abbreviations

AO
ANN
AS
BDG

bs
Dec-POMDP
DDPG
DQN

IL

MDP
(0]0)
POMDP
RF

RL

Sterm.

Arriving order

Artificial Neural Network

Arriving Shipments

Beer Distribution Game

Base stock

Decentralised partially observable Markov decision processes
Deep Deterministic Policy Gradient

Deep Q Network

Inventory Level

Markov decision processes

On-order items

Partially observable Markov decision processes
REINFORCE

Reinforcement Learning

Sterman

vii



1 Introduction 8

1 Introduction

The Beer Distribution Game (BDG) simulates a serial supply chain consisting out of a
manufacturer, a wholesaler, a distributor, and a retailer. Each has local information about
incoming orders and can order beer from his immediate upstream neighbour in the supply chain.
The game is often taught in management classes as it triggers the Bullwhip effect, a
phenomenon describing that the stocks of the actors have high fluctuations leading to
unnecessarily high costs. It is known that a base-stock-policy would lead to a cost minimum
(Clark and Scarf, 1960). However, due to batch ordering, discounts and other reasons, managers

tend to show different behaviour leading to inefficiencies.

Reinforcement Learning (RL) has gained much interest through its advancements in playing
games like Atari and GO. It can be generally applied to settings where a learning agent interacts
with an environment to achieve a goal (Sutton and Barto, 2018, p. 2). The beer distribution
game is such a setting, which leads to the question of whether RL can find good ordering
policies resulting in efficiency gains. Within this study, we replace the wholesaler with different
RL algorithms and let them play with co-players that act randomly, optimally, or human-like
(Sterman formula, 1989).

Reinforcement Learning incorporates several classes of algorithms. So far, mainly action-value
methods have been implemented to solve the BDG. Oroojlooyjadid et al. (2017), for instance,
implement a DQN algorithm that identifies efficient ordering policies. The original BDG is
formulated as a game with discrete action space (discrete order quantities). This might be a
reason why the class of policy gradient algorithms has not been considered for solving the BDG
yet. However, in many economic situations, a continuous version of the game is applicable. For
instance, if the ordered quantities are so high, that simply rounding them has no major economic
impact. Even if we do not want to deal with real-valued order quantities and incorporate
rounding into the continuous policy-gradient methods, their training process seems to get
delayed but not prevented. On the other side, policy-gradient methods incorporate a variety of
features that can deliver a valuable contribution to the research. They can be easily extended
from one-dimensional decision making to multi-dimensional decision making. Hence, they can

be used to investigate supply chains trading multiple items.

Within this thesis, we create a framework that allows the simple experimentation with RL-
algorithms playing the beer distribution game. Thereby we implement a discrete and continuous
game environment and the known policies from the literature. The BDG has some complicating
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properties such as limited information sharing among the actors during the gameplay.
Oroojlooyjadid et al. (2017) introduced some mechanisms to cope with those complicating
features. We implement some of their approaches and employ them together with the policy-
gradient methods REINFORCE and Deep Deterministic Policy Gradient (DDPG). We conduct
several numerical experiments, where our algorithms act in different settings comprising
different end-customer demand distributions and co-player policies. We show that they can
reduce the cost by up to 77% when replacing the wholesaler in a human-like supply chain with
the intelligent agent (DDPG). We further show that they perform on the same level as the
current state of the art action-value approaches (DQN). With this thesis, we create an entry

point for future research regarding policy gradient methods in serial supply chains.

The study has the following structure: (2) an introduction into the beer distribution game, (3) a
brief overview of the literature, (4) a theoretic introduction into the applied reinforcement
learning algorithms, (5) the experimental setup, (6) the numerical experiments and performance
of the policy-gradient algorithms, (7) a conclusion about the application of policy-gradient

algorithms.
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2 The Beer Distribution Game

The Beer Distribution Game (BDG) simulates a supply chain consisting out of a manufacturer,
awholesaler, a distributor, and a retailer. Each has local information about incoming orders and
can order beer from his immediate upstream neighbour in the supply chain. The game is often
taught in management classes as it triggers the Bullwhip effect, a phenomenon describing that

the stocks of the actors have high fluctuations leading to unnecessarily high costs for the total
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Figure 1: Beer Distribution Game Overview (Retrieved from: https://beergame.opexanalytics.com/#/ , 10.07.2020)

supply chain (Sterman, 1989). We assign the numbers 1 to 4 to the actors representing the
supply chain from the retailer to the manufacturer (figure 1). The game is organised in T rounds
in which each agent observes the local demand, receives shipments and places replenishment
orders g¢. The goal of each agent is not to minimise its local cost, but the cost of the total supply
chain. Hence the players act cooperatively as a team. The following formula describes the total

cost:

T 4
TC = Z Z ¢ * max{0, IL{} + c » max {0, —IL}} @
t=1i=1

i
The formula accumulates over all rounds and all agents the costs that occur concerning the
inventory level IL%. So for each agent i we specify the holding cost c, and stockout cost ct. The
inventory level can be positive or negative. If it is negative, there are backorders, and stockout
cost occurs. For positive inventory levels, there are units at hand, and holding cost occurs. The
first term represents the holding cost if there is an inventory on hand. The second term
represents the stockout cost if there are backlogged items (negative inventory level)
(Oroojlooyjadid et al.,2017).
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Shipments and Orders do not immediately reach the customer or supplier, respectively. They

need some time to be processed and shipped. Hence for each agent, we further specify a
shipment lead time léhip and an order lead time 1/}, 4., The shipment lead time describes the

delay of shipments from the supplier to the agent. The order lead time specifies the number of

rounds that the order is delayed on the way from an agent to its supplier (see figure 1).

The game lasts several rounds. Usually, the players do not know the number of rounds T to

avoid horizon effects. Each round requires all agents to carry out five steps (Sterman, 1989):

1. Receive inventory and move shipments. The arriving shipment is added to the inventory.

Shipments that are travelling from supplier to the agent are moved one step towards the
agent. The number of delays between agent i and i + 1 is defined by léhip

2. Fill orders. Agents examine the arriving order. Orders are filled to the extent that
inventory levels permit. Ordered goods that cannot be delivered add up to the backlog
(negative inventory level). The amount that must be delivered incorporates the negative
inventory level, if any, and the incoming order. The outgoing shipment is placed on the
shipment delay of agent i — 1.

3. Inventory level is updated

4. Move orders in the order delay. Inbound orders that are ordered from agent i by
customer i + 1 are moved one step towards agent i. The number of delays is defined by

order

5. Place orders. Each agent decides how much to order gi and places the order into the

order delay.

The retailer and manufacturer need some side notes, as they represent the tails of our supply
chain. There is an external demand distribution that simulates the orders arriving at the retailer.
The manufacturer has no supplier, but he can produce the item. So instead of a shipment delay,
it can also be called production delay describing the time needed to produce an order. Only step
five requires a decision to be made by the agent (Sterman, 1989). The agents do not share
information during the game. Only after the game has finished, the agents know the total cost
that occurred. In this thesis, we will examine whether an intelligent agent will find a way to

reduce cost.
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3 Literature Review

3.1 Current State of the Art

The beer game is a serial supply chain network and research dealing with such networks is
closely related to the beer game setting. There is extensive research covering various aspects of
this setting. Such aspects include modelling human behaviour, investigating the role of
communication or designing models to derive optimal ordering policies. In this thesis, we
implement the BDG and reinforcement learning algorithms to find good ordering policies.
Therefore, we mainly focus on research coping with models that deal with ordering policies.
However, Martinez-Moyano et al. (2014) provide an overview of the history of the BDG and
its rule changes over time. Over the years several variants of the Beer Distribution Game
evolved. In this thesis, we rely on the version defined by Sterman (1989) and refer to it as the
classical BDG setting in the following. The strategy that leads to minimal cost in this setting is
already known. It is called the base-stock policy (Chen, 1999) and only results in minimal cost
if applied by all players.

Within the base-stock policy, each agent has a certain inventory-level, called the base-stock
level. Further, there is a value called the installation stock. It comprises the on-hand inventory
minus the backlogged orders plus the outstanding orders. The agent chooses an order quantity
to keep its installation stock equal to the base-stock level. The calculation of optimal base-stock
levels is a non-trivial question. Clark and Scarf (1960) suggest a way to calculate the optimal
base-stock levels under certain assumptions such as random customer demand and stockout
cost at the retailer. Our classical BDG does not fulfil those assumptions. Oroojlooyjadid et al.
(2017) use a heuristic approach similar to the methods suggested in Graves (1985) to choose
the base-stock levels. We will rely on the values for the base-stock levels they used within their

study.

However, due to incomplete information, batch ordering, discounts and other reasons, managers
tend to show different behaviour leading to the “Bullwhip effect” (Lee et al., 1997). The
bullwhip effect describes a phenomenon where orders to the supplier tend to have a larger
variance than sales to the buyer. This distortion propagates upstream in an amplified form (Lee
et al., 2004). As a result, there are high fluctuations in inventory levels leading to unnecessary
high cost. Lee et al. (1997) and Sterman (1989) examine some of the rational and behavioural
reasons. There are several approaches to solve the Bullwhip problem. Wu and Katok (2006),
for instance, investigate how communication affects performance during the game. Ponte et al.

(2016) investigate methods for profit allocation and corresponding incentives. Sterman (1989)
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introduced a formula that reflects how human-players over or under-react when they observe
large shortages or excess inventory. Note that he does not focus on deriving an optimal ordering
policy but instead aims at modelling human behaviour. Therefore, his research is crucial to our
study. To decide whether an algorithm should be implemented, it might be valuable to check
whether it performs better than humans. Hence his formula will serve as an essential baseline
of performance. There are some extensions to the Sterman formula. Strozzi et al. (2007), for
instance, use a genetic algorithm to generate the coefficients of the Sterman formula.

For cooperative games, Claus and Boutellier (1998) differentiate between independent learners
and joint action learners. Independent learners have no information about the state of the other
players, whereas joint action learners share information about their states. The BDG does not
allow information sharing during the game. Hence the actors can be classified as independent
learners. Claus and Boutellier (1998) further investigate the behaviour of reinforcement
learning algorithms in simple multi-agent games and their convergence to certain equilibria.
We will see that under certain assumptions, our game converges into a stable state. If the actors
follow the base-stock policy and the end-customer demand is distributed as defined by sterman
(1989) the inventory levels of our players converge to 0. They will further just be ordering the
arriving demands. Every other action would increase their local inventory and subsequently,
the local and total cost. Hence there is no incentive for the agents to change their behaviour.

Oroojlooyjadid et al. (2017) review some of the algorithms that seek to derive good ordering
policies. Kimbrough et al. (2002) implement a genetic algorithm to search for optimal ordering
rules. The rules they formulate are of shape d + x where each agent observes the local demand
d and chooses x such that the sum is the ordered quantity. Giannoccaro and Pontrandolfo (2000)
and Chaharsooghi et al. (2008) use RL to solve the BDG. Their state variables are the inventory
positions of the agents, discretised into 9 and 10 intervals, respectively. Both papers assume
information sharing across the agents to simplify the problem. This is why Oroojlooyjadid et
al. (2017) identify a gap in academic research. To close this gap, they implement an action-
value algorithm (DQN) to solve the classical beer distribution game. To avoid information
sharing, they suggest a feedback scheme as a communication framework. In their setting the
algorithm only controls one agent meanwhile the other agents are controlled by simple formulas
(i.e. Sterman & base-stock) or by human players. We will be closely following their approach
throughout this thesis. However, instead of applying an action-value RL algorithm such as

DQON, we will transfer some of their ideas to the family of policy-gradient RL algorithms.
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3.2 Our Contribution

We create a software environment that facilitates the examination of RL algorithms within the
beer distribution game. Our implementation offers a variety of different scenarios and can be
configured as a discrete or a continuous version of the game. Both versions differ in a way that
the continuous version allows real-valued order quantities. We further include different demand
patterns and methods to simulate the behaviour of the agents. For every agent, we may decide
whether we want him to be the intelligent learning agent or whether he should act optimally

(base-stock), randomly or human-like (Sterman, 1989).

Merely replacing the agents with RL algorithms does not solve the problem. Some traits like
the decentralised decision making, cooperative goal and lack of information sharing complicate
the problem (Claus and Boutilier, 1998). To address those issues, Oroojlooyjadid et al. (2017)
introduced some mechanisms that allow a DQN-algorithm to solve the classical BDG. They,
for instance, introduced a feedback scheme that enables the training of the DQN algorithm,
although there is no information sharing during the game. Those mechanisms are

reimplemented and adopted to allow a respective training of policy-gradient algorithms.

Policy-gradient algorithms can comfortably handle continuous game settings. At first sight, it
might be surprising to implement a continuous variant of the game, as we are not able to order
fractions of goods in economic reality. Nevertheless, in many economic settings, the amount of
ordered goods is so high, that simply rounding the ordered numbers at the end should not have
a major economic impact. Incorporating the rounding directly into the algorithm did not lead to
significant performance losses, although it increases the training time required (Appendix D).
Policy-gradient methods are not just easily applicable to the continuous setting but also offer
other advantages. They can be easily extended from one-dimensional decision making (ordering
beer) to multi-dimensional decision making (i.e. ordering beer and soft drinks). This study
should deliver an entry point and experimental framework for such future research question.
Policy-gradient methods have not been considered for the BDG so far and should, therefore, be
examined for the problem at hand. Within this thesis, we implement two policy-gradient
algorithms. The REINFORCE algorithm (Sutton and Barto, 2018, p. 326) is applied to the
deterministic and the continuous version of the game, and the Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al.,2015) is applied to the continuous variant. We will further
compare the performance of the algorithms to the action-value method introduced by
Oroojlooyjadid et al. (2017)



4 Theoretic Introduction 15

4 Theoretic Introduction

4.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is about learning what action to take in a particular situation to
maximise a specific reward (Sutton and Barto, 2018, p. 3). Thereby a software agent interacts
with an environment and tries to discover behaviour leading to a specific goal. This goal is
reflected by rewards that the agent can get for his actions. It usually tries to maximise rewards.
For favourable actions, he receives a higher reward. One characteristic of RL is that the learner
is not guided towards the desired behaviour. It has to discover actions leading to higher rewards
by trial and error. This leads us to another key feature of RL, the exploration-exploitation
dilemma (Sutton and Barto, 2018, p. 1f). To receive a high reward, an agent should choose
actions which turned out to be successful in the past (exploit). To identify those actions, it must
try new behaviour. In other words, it must explore its opportunities. Neither exploration nor
exploitation can be pursued exclusively without failing the task. If exploitation is done too
extensively, the agent just misses valuable actions. If the agent focuses too much on exploring
the world, he does not maximise its rewards representing the proper goal (Sutton and Barto,
2018, p 3). However, it is a crucial characteristic of RL, and we will see how the different

algorithms address this issue.

Another typical feature of RL is the delay between actions and their rewards. Some actions
might not just influence the immediate rewards but also the following situation and hence all
subsequent rewards. So, there might be a delay between actions and rewards (Sutton and Barto,
2018, p. 1). RL is especially applicable when we have an agent interacting with an environment.
This usually involves sequential decision making, as the agent is constantly facing new
situations and acting upon them. This makes RL an area of machine learning that is especially
suitable for sequential decision making (Sutton and Barto, 2018, p. 47). Typical fields of
application include games, robotics or business management (Li, 2017).

Those sequential decision processes can be formalised by the concept of Markov Decision
Processes (MDP). We consider an agent interacting with an environment (see figure 2). In each
time step t the agent observes the current state S; € S of the environment and decides which
action A; € A(s) to take (The set of possible actions depends on the current state). The
environment transitions into the next state S;,,. As a consequence of its action, the agent

receives the reward R,;; E R € R.



4 Theoretic Introduction 16

Agent

vy Y
~
~—

state reward action

Rt+1 s
— )
St+1

Environment J

Figure 2: The agent-environment interaction in an MDP, Sutton and Barto (2018, p.48)

Where §, A, R are the sets of all possible states, actions and rewards, and they are usually finite.
Through the interaction with the environment the agent creates a trajectory of states, actions
and rewards: Sy AgR;S;A1R,S, ... Ar_1 RSy . Our beer game is an episodic setting. This means
that there is a natural end of a trajectory (number of rounds played per game). Afterwards, the
game starts again, which is independent of how the previous game ended (Sutton and Barto,
2018, p. 54). At each state during the interaction, we can calculate the probability to transition
into the next state and observe a particular reward. The probability of getting into the state s’
and receive reward r if the previous state and the corresponding action are given can be
calculated by (Sutton and Barto, 2018, p. 48):

p(s',r|s,a)=Pr(S;=s",R;|Sec1 = 5,41 = a) @)

The probability for each combination of s, and R, only depends on the preceding state and
action. For each action, the agent receives a reward. We do not want to maximise the reward
for a single action but a series of actions. Hence the agent’s goal is to maximise the total amount
of rewards it receives. This leads us to the definition of the return G,. The return is a function
of the rewards. The simplest case is just the sum of future rewards G; = Ry1q + Riyp + -+
R;. Especially in very long-term settings or continuing cases, the reward can quickly get
towards infinity. Therefore, the rewards are often discounted y in a way that the return
converges (Sutton and Barto, 2018, p. 54f). The return is then defined as:

G, = zr VReras withy € (01] @)
Note that the BDG is episodic and in this study considered as relatively short term. However,
we included the discounted version to allow experiments with longer runs of the game and to
check whether it influences performance. As we do not know deterministically the rewards that
we receive in the future, we define our goal as maximising the expected return. Many RL
algorithms further use the estimation of value functions. Those functions indicate “how good”

it is for an agent to be in a specific state or to be in a specific state and take a particular action.
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The “how good” is related to the expected return. This return depends on the current state and
the actions that the agent is going to take in the future. To define value functions, we need a
concept describing the way the agent acts in certain situations. This behaviour is formalised
within the idea of policies . In each time step, the agent finds itself in state S; = s and chooses
the action A; = a according to a particular policy . Thereby m(a|s) = Pr(A; = a|S; = s)
defines the probability of taking action a given the state s at time-step t. The core of RL
algorithms is to change the agent’s policy in a way that a higher return is expected (Sutton and
Barto, 2018, p. 54f).

With the definition of the policy, we have the ingredients to define value functions. The state-
value function v,; describes the expected return if we consider ourselves in state s and the agent
acts according to the policy m until the rest of the game.

T
vn(s) = E[thst = S] =E,

Y Reyksal St = s] ,foralls €8 Q)
k=0

The action-value function Q,, describes the expected return, if we consider ourselves in state s,
take action a and then follow the policy m until the rest of the game.

T
Qr(s,a) = E[G¢|S; = s, Ay =a] = E,

Y Resrsrl Se = 5,4 = a] ®)
k=0

If p(s’,r |s,a) is given, then optimal policies can theoretically be found through dynamic or
linear programming. However, in many practical applications (e.g. the beer game), we deal with
large state and action spaces. The methods to find optimal solutions often require more
computational power than available. One fundamental property of RL is to approximately solve
MDPs (Sutton and Barto, 2018, p. 67f).

The beer game setting has some properties that further complicate the problem. The state
variable is not fully accessible to the agent. In other words, the state of the environment can
only be partially observed by the agent. This scenario is formalised by partially observable
Markov decision processes (POMDP) (Sutton and Barto, 2018, p. 466f). Furthermore, there is
an intelligent agent which can only observe partial information but must cooperate in a
decentralised manner with multiple other agents to achieve a common goal. Such problems are
called Dec-POMDP, and according to Bernstein et al. (2002), the problem is NEXP-complete.
There is no polynomial-time algorithm and probably even no exponential-time algorithm that
solves the problem. We will investigate whether reinforcement learning can find an

approximate solution.
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The interested reader recognises that we introduced finite MDP. The state, action and reward
spaces are finite sets. This formalisation is applicable when we deal with discrete settings. As
already mentioned, we extend the BDG towards a continuous setting. The state and action space
incorporate an infinite set of real-valued numbers. The underlying logic of the MDP remains
the same. A formalised mathematical description of MDP with infinite sets requires more
complex notations without providing valuable information for this study. Hence, we will stick

to the discrete notations.

4.2 Policy-gradient algorithms

In Reinforcement Learning, there are two main areas when it comes to approximate solution
methods. Action-value methods learn the value of actions and then select the action based on
the estimated action value. Q-Learning, for instance, is a method where the action-value
function Q is learned. The Deep Q-Learning (DQN) applied by Oroojlooyjadid et al. (2017) is
such a method. The policy is indirectly improved by updating the learned Q-function (Sutton
and Barto, 2018, p. 131). Because of estimating the value of actions, those methods are hardly
applicable to continuous action spaces. On the other hand, there are policy gradient methods
that learn a parameterised policy. As we know, the policy defines the behaviour of the agent in
certain situations. The policy is determined by parameters, and the parameter vector is notated
with 6. The policy is explicitly given by my(a|s). The probability that action a is taken at time
t depends on the current state s of the environment and the parameters 6 of the policy (Sutton

and Barto, 2018, p. 321f). This probability can be calculated using the following formula:

ng(als) =Pr(A; =a|S; =s,0, = 6) Q)
The fundamental idea is to adjust this probability distribution in a way, that the actions that lead
to a higher expected return get a higher probability assigned. However, there are multiple
actions with a chance to be taken. This is called a stochastic policy, and an example is the
REINFORCE algorithm, we apply in this study. On the other hand, we have deterministic
policy gradient methods, such as DDPG, that define the actions deterministically. Hence given
a particular state and parameter vector, the algorithm outputs the action to take. In other words,
the probability for this action is equal to 1, whereas the probabilities for all other actions are 0.
A policy with a parameter vector could, for instance, be a neural network mapping states to
actions. In that case, the parameters 6 of the policy are the weights of the neural network.
Learning then means enhancing the parameters that define the policy, such that a higher return

is expected. A value function might still be present in the algorithms, but in this case, it is not
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used to estimate action values but to learn the policy parameters (Sutton and Barto, 2018, p.
231f).

To improve our policy, we investigate a scalar performance measure J(8) for the policy
parameter. Performance is maximised by updating the policy with the approximate gradient

ascentin J:

0ip1 = 6, + aVj(6,) (7)
This means we modify our policy towards the direction, that results in higher expected
performance. VJ(8,) is not the exact gradient but a stochastic estimate whose expectation
approximates the actual gradient. « is a step size parameter, called the learning rate, defining

the size of adjustment we apply to our policy (Sutton and Barto, 2018, p. 231f).

In our episodic case, we define performance as the state-value of our start state: J(8) =
v, (So)- The performance depends on both the selection of actions and the distribution of states
in which those selections are made. Both are influenced by the policy parameter (Sutton and
Barto, 2018, p. 324). Hence it gets difficult to change the policy parameter in a way that ensures
improvements through a better selection of actions. Employing the policy gradient theorem
(Sutton and Barto, 2018, p. 325), the problem can be theoretically reformulated:

T
T
V](0) = E Z Vlnng(atlst)Gt(T)],with G:(7) = z yk=t=1R, ®)
k=t+1

t=0

This is a significant result. We can now approximate our gradient by sampling data with our
policy and calculating an expected value. The policy gradient method now has to deal with two
main aspects. First, sampling actions according to a particular policy and thereby generating
data. And secondly calculating the log probabilities of an action given a specific probability

distribution g (a;|s;).

4.2.1 REINFORCE
In our policy gradient algorithms, the policy is approximated with an artificial neural network

with parameter vector 6. In the REINFORCE algorithms of Sutton and Barto (2018, p. 328f),
one episode of the game is played and the policy is updated afterwards. Our version is slightly
adjusted because we want to gather more experience before taking an update step. Therefore,
the algorithm is modified in a way, that it plays N episodes of the game, creating a set of
trajectories D = {t;};=1,_n, Where t; represents one trajectory. Within this batch of games, the
agent acts upon policy my. After each game played, we know the total cost that occurred and

adjust the rewards for each action according to the feedback scheme suggested by
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Oroojlooyjadid et al. (2017). The feedback scheme takes the teamplay of an agent with respect
to the total cost into account (section 5.1). Based on the experience generated, we take an update
step of our policy. As we can see in formula 8, the gradient is an expectation so that we can
estimate it with a sample mean of our created experience (Achaim, 2018, simple policy

gradient). To estimate the gradient, we use the set D of played games:

T
1 , T
Vi) =1 Y > VInme(@ls)Ge(t),  withG ()= >  y<IR ©

€D =0 fe=t+1
Note that we use G, () for the return of a particular trajectory now, because we create multiple
trajectories and must introduce a notation to identify those. The pseudocode for our
REINFORCE algorithm is shown below. The main questions about sampling actions during the
game and calculating the logarithmic-probabilities have not been discussed yet. They differ in

between the discrete and continuous variant of the algorithm and will be introduced in the

following.
Algorithm 1: REINFORCE: Pseudocode
1:  Input: a differentiable policy parameterisation gy (al|s)
2:  Algorithm parameter: step size a > 0
3. Initialise policy parameter 6
4. Loop forever:
5: Generate N episodes: Sy AgR1S141R,S; ... Sr_1Ar_1Ry , Tollowing g
6: Loop for each episode:
7 Loop for each step of the episode:
8: R, = calculate feedback (formula 14)
9: G (1) =XF_, 1 7* 1 Ry, (calculate discounted rewards to go)
10: 0=0+ a%ZTED Y, Vinmg(a;|s.)G.(7) (take an update step)

4.2.1.1 REINFORCE for discrete action space
Within the REINFORCE algorithm for discrete action spaces the policy mg(als) outputs the

probability for each of the possible actions depending on the state and the parameter vector. To
be precise, we output the logits for the possible actions. However, this is less important here as
it is just a technical thing to avoid giving to many boundaries to the neural network. The
interested reader is referred to Fahrmeir et al. (2016, p. 464). Those probabilities then
characterise a categorical probability distribution. When the agent interacts with the

environment, it uses the probability distribution to sample its action, leading to a new state.
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Given the new state, our policy outputs another categorical probability distribution, which again
is used to sample the corresponding action. Given a probability distribution, the calculation of
logarithmic probabilities is straightforward. By randomly sampling the actions, we
automatically ensure that there is some degree of exploration happening because there are

several actions with a certain probability Sutton and Barto (2018, p. 328f).

4.2.1.2 REINFORCE with Gaussian policy
For the continuous REINFORCE algorithm, we require the same two steps. Given a specific

state, we derive a probability distribution that reflects the likelihood for the actions. We then
use that distribution to sample actions. In a continuous action space, we can simply change the
derived probability distribution from a categorical probability distribution to a normal
distribution. The policy does not longer output the probabilities for the actions but instead the
mean u(s,0) and standard deviation o(s,8) that characterise a normal distribution. This
approach is called a gaussian policy. Hence my(a|s) is characterised by the density function of

a normal (Gaussian) distribution:

_ 1 B (a—u(s, 6))2 10)
molals) = o(s, H)MeXp< 20(s,0)? )

Given the density function, we can easily calculate the logarithmic probabilities needed for our
gradients. The idea behind the gaussian policy is that the mean specifies the order quantity and
the standard deviation ensures the degree of exploration around the mean. As the training
evolves the standard deviation should decrease, so we get more precise about which action to
take. In this study, we only treat the classical BDG setting, where one item is traded within the
supply chain. However, this setting could be extended from a one-dimensional action space to
a two-dimensional action space by adding a second pair of mean and standard deviation as
output (Sutton and Barto, 2018, p. 357f).

4.2.2 Deep Deterministic Policy Gradient
The Deep Deterministic Policy Gradient (DDGP) is a method that combines advantages from

action-value and policy-gradient algorithms. It is only applicable to continuous action spaces.
The DDPG algorithm was introduced by Lillicrap et al. (2015). In the following, we rely on the
notations given by Achaim (2018, DDPG) in the OpenAl SpinningUp implementation of the
DDPG implementation.

The DDPG makes use of the action-value function Q. (s,a) that we already introduced in
section 4.1. The little star indicates that we talk about the optimal action-value function

describing the value of state s if we take action a and follow the optimal policy * hereinafter.
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Note that we used 7 to describe stochastic policies. For deterministic policies we use u(s)
instead. To further simplify notations we will just use Q*(s,a) for the optimal action-value
function in the following. The DDPG significantly differs from the already introduced
REINFORCE algorithms in a way that it deterministically derives the action given a certain
state. If we know the optimal action-value function Q*(s, a) then a greedy policy u(s) simply
derives the optimal action, given a specific state by taking the action with the highest Q-value
assigned: u(s) = a*(s) = argmax,Q*(s,a). Hence our goal is to approximate the optimal
action-value function (Achaim, 2018, DDPG).

The starting point for our algorithm is the Bellman equation for the optimal action-value
function. The basic idea of the Bellman equation is that the value of a particular state is the
reward we expect to get from being there and taking action a, plus the value of wherever we

land next.

Q*(s,a) = Eg_ ppysylr(s,a) + ymax,Q*(s',a')] 11

The s'~P(x* |s, a) indicates that the next state s’ is sampled from the environments transition
rules. The max represents the fact that when we choose our action, we pick the action that leads
to the highest value. As we do not know the optimal bellman function Q*(s, a), we train a neural
network Qs(s, a), with parameters &, to be an approximator. We further consider a set D of
transitions (s, a,r,s’, d), where d indicates whether s’ is a terminal state (d=1). If we reach a
terminal state, we cannot expect any additional rewards. During the learning process, the
bellman equation plays a vital role because we try to minimise the mean-squared bellman error
(MSBE). The MSBE roughly describes how close our approximator Qs gets towards the
Bellman equation (Achaim, 2018, DDPG).

!/ ! 2
L(6,D) = E(sqr,5 a)p [(Qa(s, a) — (r+y(1 — d)max,Qs(s’,a")) ] (12)
The DDPG algorithm incorporates three features that slightly modify the loss function to
enhance training and should therefore be briefly introduced. (Achaim, 2018, DDPG).

1. Replay Buffers: In the DDPG, there is a storage for transitions. We call it replay-buffer
D. When interacting with the environment, new transitions are added to the replay-
buffer. When it comes to learning, we take a small sample of transitions out of the buffer
and train our networks. This is done because many optimisation algorithms assume
independent and identically distributed samples. If we would take samples out of a
single run of the game, they are correlated because a particular state depends on the
previous ones (Achaim, 2018, DDPG).
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2. Target Networks: The later term of the MSBE loss function is called the target: r +
y(1 —d)max,Qs(s’,a’). When we are minimising the MSBE loss, we try to
approximate the target with our Q-function. The target depends on the same parameters
6 that are trained, which leads to instabilities during the MSBE minimisation. As a
solution, we make use of a second network, the target network, which is a copy of the
main network. It uses a set of parameters 6., Which come close to § but with a time
delay. In the DDPG algorithms, the target network is updated once per main network
update using Polyak averaging (Polyak, 1990): 8¢y = T6tqrg + (1 —7)6, With T €
(0,1), but usually close to 0. The weights of the target networks slowly track the learned
network (Lillicrap et al., 2015)).

3. Maximum over continuous actions: We consider ourselves in a continuous action space.
Hence the calculation of the maximum over actions max,Q(s,a) is an expensive
subroutine because there is an infinite number of possible actions. As our action space
is continuous, we can assume a differentiable Q-function with respect to the actions.
This allows us to use a gradient-based learning rule for the policy u(s). If we have a
differentiable Q-function, we can approximate max,Q(s,a) with Q(s,u(s)). To

compute an action that approximately maximises Qs,,,., the DDPG implements a target
policy network H1qrg- The target policy is learned the same way as the target Q-

function: by Polyak averaging the policy parameters during training (Achaim, 2018,
DDPG).

With those modifications, our MSBE loss function slightly changes towards:

2
L(8,D) = E(sars ) l(Qa(s. @) = (4 7 (L = Dy (5" By, 1) ] a9

Although the DDPG algorithm uses methods from Q-Learning, it remains a policy gradient
algorithm. We want to learn a policy ug(s) that deterministically gives the action that
maximises Qs (s, a). Hence concerning the policy parameters, we can apply gradient ascent to
solve: maxgE,._p[Qs(s, g (s))] (Achaim, 2018, DDPG).

As our policy deterministically derives actions, we have to consider the exploration/exploitation
dilemma. During training, we artificially create noise that slightly changes the derived actions
to introduce exploration. As suggested in the DDPG paper of Lillicrap et al. (2015), we use the
Ornstein-Uhlenbeck noise (Uhlenbeck and Ornstein, 1930).
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Algorithm 2: Deep Deterministic Policy Gradient: Pseudocode
1: Input: initial policy parameters 8, Q-function parameters &, empty replay buffer D
2: Set target parameters equal to the main parameters 6,4,y = 6, 8¢4rg = 6
3: Repeat:
4: Observe state s and select action a = clip(ug (s) + &, aiow, Anign), E~Noise
5: Execute a in the environment
6: Observe next state s’, reward r, and done signal d and save transition (s, a,r,s’,d) in
temporary episode storage
7: If s is terminal, apply feedback scheme (formula 14) to transitions in episode storage,
reset environment state
8: Add transitions in episode storage to replay Buffer D and reset episode storage
9: if it is time to update then
10: Randomly sample a batch of transitions, B = {(s,a,r,s’,d)} from D
11: Compute targets: y(r,s',d) =7+ y(1 = d)Qs,,,, (5" kg, (s)
12: Update Q-function by one step of gradient descent using:
T D (@50 = 30 D)
(s,ar,s,d)EB
13: Update policy by one step of gradient ascent using
v % D Q)
(s.ars,d)eB
14: Update target networks
6targ = T5targ +(1—-1)8
Otarg = TOtarg + (1 —17)0
end if
until convergence

The pseudocode of algorithm 2 is basically the DDPG algorithm given by Lillicrap et al. (2015)
and implemented by Achaim (2018, DDPG). They take a learning step after every single
interaction with the environment. Hence this algorithm is especially applicable to continuing
problems, where no clear end of an episode exists. In our episodic case, such an end exists.
Even more important is that our agents only know the total cost of the game after it ends. To
include this information into the design of the rewards, we have to store the transitions of one
episode of the game into an episode storage and wait until the episode is over. Afterwards, we
adjust the rewards with the feedback scheme and finally add all transitions of the episode
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storage to the replay buffer. As the replay buffer is usually large (i.e. 1.000.000 transitions) and
the samples used for training are typically small (i.e. 32 transitions), we assume that our
adjustments do not have a significant influence on the performance. It is not likely that they
would have been chosen out of the replay buffer. We are not going to prove that formally, but

the learning progress seems to justify the assumption.



5 Experimental setup 26

5 Experimental setup

5.1 Algorithmic key components

We must define some key variables to create an environment that supports a reasonable
interaction with the intelligent agent. For instance, we must control the available information at
each agent, the design of rewards and architecture of our neural networks. Therefore, we briefly

introduce some of the critical components.

State variables: Each agent observes four variables. Consider agent i at time t. The first
variable is the inventory level IL. that we already introduced. The second variable is the on-
order items 00.. It describes the items that have been ordered from agent i + 1 but not received
yet. The arriving order A0} describes the local demand reaching agent i from its customer i —
1. Downstream the supply chain the agent receives shipments AS} from his immediate supplier
i + 1. The variables A0} and AS{ need special attention as they represent the tails of the supply
chain. The first variable describes the end-customer demand, whereas the latter describes the
production of the beer. In each period, every agent observes those four variables. Hence in
period t agent i has the historical observations of =
[( 1LY, 00§, A0§, ASS), ..., (ILL, 00L, A0}, ASE) 1. With our assumption of no information
sharing, we model the BDG as POMDP. In other words, each agent can only access its locally
observable state variables. However, after each time step the observation vector o} grows. We
are going to use neural networks to predict the probabilities for taking a particular action. It is
inconvenient to handle variable input sizes for neural networks, so we will only use the m last
observations as the state variable. Concluding the state variable comprises S} =
[(ILY i1, 00f py1, AO} i1, ASE_mi1), -, (1L, 00%, A0}, ASE) ] (Oroojlooyjadid et al.
(2017)).

The ANN architecture: There are many possibilities to design the structure of an artificial
neural network (ANN). As input, we use our state variable. The outputs depend on the algorithm
we are using. Within the discrete REINFORCE, it outputs the logistic probabilities for all
possible actions. Within continuous REINFORCE, it outputs the mean and standard deviation
that characterise a Gaussian policy. We experimented with different amounts and sizes of
hidden layers and used two hidden layers of sizer 32 in the end. The DDPG algorithm uses two
different neural network architectures. One for training the policy and one for estimating the Q-

function. Lillicrap et al. (2015) precisely describe both network architectures.
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Action Space: We consider both the discrete and continuous BDG. Our end-customer demand
gets up to eight items per period. Hence, we used an action space reaching from 0 to 16. For
the discrete BDG, we force the actions to be natural numbers. For the continuous version, real-

valued orders are allowed. Further increasing the action space did not lead to better results.

Reward Function: Consider an agent i at time t taking action A,. We have to think about how
we can assign a reasonable reward value R! to his actions. After acting the state transitions from
St to St.,. We can subsequently calculate the new inventory level ILL,, and further the
corresponding shortage and holding costs. The sum of both is considered as R:. In our setting,
we have transportation and order lead times. Hence the cost that occur in a certain period are
not directly related to the action taken in the previous period, but instead is a result of the actions
taken in prior periods. Nevertheless, as we defined our state variable to include the last m
periods, we still retain some information about the previously taken actions. Optimising for the
rewards R} would lead to a minimisation of the local cost occurring at the agent. The local cost
minimisation would not necessarily lead to a minimum regarding the total cost of the entire
supply chain. The total cost is defined by Y%, >T_, RL. The information about the cost of the
other agents is only shared after the game ends. To add this information into the design of the

rewards, we consider the feedback scheme of Oroojlooyjadid et al. (2017).

Feedback Scheme (Oroojlooyjadid et al., (2017): After the game ends, the information about
the total cost (total reward) is shared among the agents. The goal of our agent is to minimise
the total cost. Therefore we must include this information into the rewards the agent receives
for its actions. After one episode of the game is played, we update the rewards with the formula
suggested by Oroojlooyjadid et al. (2017):

=Rl + —(a) 9Y) (14)

Where 9t = —Z _1 R! is the average reward per time-step of agenti and w = Yi_, 9' is the

average reward per period. The factor f; is a regularisation coefficient. If it is too low, our agent
tries to minimise its own local cost. If it is too high, the focus lies on cost minimisation of the
co-players. Based on a grid search we choose $; = 100, as it seems to deliver good results. The

role and optimisation of this parameter should be discussed in future research.

Determining the value of m: As already mentioned the inclusion of the m past time steps is
crucial to include valuable information about previous states and hence for the design of

rewards. Thereby m is related to the order and shipment lead times. Oroojlooyjadid et al. (2017)
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suggest that m should ideally be chosen as large as the highest possible delay. This delay is the

sum of all shipment and order lead times: %4, (/.. + I,.4.,). Itis the time one order requires

ship order
to propagate from the retailer up the supply chain, getting produced and shipped down the
supply chain to the retailer again. However, a large m increases the size of our neural network
and hence slows down the training process. The selection of m results in a trade-off of accuracy
and computational resources. Ideally, it would be 15 in our setting, but due to limited
computational resources, we use m = 5. When using undiscounted rewards, increasing m only

led to small performance improvements (Appendix A).

5.2 Our experimental framework

One part of this thesis is to create a setting for further research regarding the beer distribution
game. To facilitate the use of the environment, it seems reasonable to meet some standardised
requirements. Several open-source frameworks facilitate the application of reinforcement
learning. The probably most used ones are part of OpenAl. With the Gym toolkit, OpenAl
standardises the formulation of environments in which RL-Agents can be trained. Furthermore,
many open-source frameworks that develop RL-algorithms can be easily tested with

environments implementing the Gym interface. Hence our BDG will meet those requirements.

For the implementation of the modules, we used open-source libraries, tutorials, and other
publicly available code. For the BDG environment, we got inspired by Orlov (2019). For the
REINFORCE agents, we followed the OpenAl SpinningUp implementation of the simple
policy gradient algorithm (Achaim, 2018, simple_pg.py). The DDPG algorithm is closely
related to the implementation of Tabor (2019, ddpg_torch.py). For the Sterman formula, we
used the R-implementation of Edali and Yasarcan (2014). We implemented the framework in
python 3.7.7 with PyTorch 1.4.0. The code runs on a local machine with a total RAM of 16 GB
and six cores, each with 2.20 GHz.

We create a modular software framework that allows the flexible experimentation with various
agents playing the game (see figure 4). Therefore, we identified four main components that
should work independently: (i) the BDG environment, (ii) the main training routine, (iii) a class
that simulates the behaviour of known policies and (iv) the intelligent agents. The BDG
environment includes the logic of the game and implements the OpenAl Gym interface. The
main script steps through the environment by passing the actions to the environment and
receiving the new states and rewards. It handles the batch creation and storage of trajectories.
The environment expects one action for each agent. Hence, we can flexibly decide how our

agents should behave. Their behaviour can be controlled by one of the known policies from
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literature or by one of the intelligent agents. For the intelligent agents, we created separate
classes that handle the learning procedure, loss calculation and action sampling according to
their current policy. Further, we implement an agent simulator class that includes a method to

derive actions according to the optimal base stock policy, random policy or sterman formula.

Agents

Utils
REINFORCE Agent
+ feedback_schemel() ¢ action()
+get_action
+ reward_to_gol -
-to_gol) +calculate_loss()
+learn()
<<Gym Environment>>
BDG Environment REINFORCE Agent cont.
N Main logic -
+act|on_space | including L— +get_action()
+observation_space trai +calculate_loss()
raining loop
+reset() +learn()
+render()
+step()
DDPG Agent
Agent Simulator +get_action()
+ policy +calculate_loss()
+ get_actions() +learn()

Figure 3: Software Architecture of the Experimental Framework

We implemented some unit tests to ensure whether our logic is correct. To see if our BDG
works correctly, we compare the total cost that occur to known values from the literature. For
the base stock policy, we rely on values given in Oroojlooyjadid et al. (2017). For the
simulation of human-like behaviour, we use values from Edali and Yasarcan (2014).

5.3 Training and Evaluation process

To understand how we conduct numerical experiments, we briefly describe the training and
evaluation process. We describe the scenario, where an RL algorithm controls the wholesaler
and the co-players follow a known policy from research. The logic for the REINFORCE and

DDPG algorithms is similar. We refer to them as intelligent algorithms in the following.

Training procedure: Within the main logic, we create our BDG environment and specify it as
discrete or continuous. In our implementation, we assigned the values 0 to 3 to the four agents
of our supply chain. We determine the index of the agent that is controlled by the RL-algorithm.
In our case, it is equal to 1 as the intelligent agent should play the wholesaler. With this index,
we can now request the action and observation space for our agent from the BDG environment.
We further create our intelligent agent and pass the possible action space to him. It is usually

16 representing orders reaching from 0...15 with natural numbers for the discrete and real-
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valued numbers for the continuous case. To define the behaviour of the other agents, we create

an agent simulator class and specify the policy of the co-players.

The training loop slightly differs for the REINFORCE and DDPG algorithm. For the
REINFORCE algorithm, each iteration of the training loop (epoch) comprises two steps. We
first play the game to gather experience, and we secondly update the policy, which represents
a learning step. To gather experience, we play a bunch of games (batch) where the intelligent
acts upon its current policy. The agent simulator calculates the actions of the co-players. After
each game, we adjust the reward of the agent with the feedback scheme (formula 14). We
further calculate the rewards-to-go (formula 3). When we have played some games and gathered
a certain amount of transitions (batch size), we take a learning step. The data from our batch is
passed to the REINFORCE agent to take one update step of his policy. This process is

repeatedly done until performance converges.

The procedure for the DDPG algorithm is slightly different because it uses a replay buffer.
Instead of gathering a certain amount of transitions, it plays only one game, applies the feedback
scheme and adds the transitions to the replay buffer. The DDPG takes a learning step after every
single step within the environment by sampling data out of the replay buffer. Hence the learning

steps are independent of the game endings.

Evaluation procedure: To evaluate the performance, we simply use our trained agents and let
them play 1000 rounds of the game. We use the mean of the total cost of the games as an
evaluation metric. We use the optimal base-stock policy by Clark and Scarf (1960), as an upper
performance baseline. We use the formula of Sterman (1989) to compare the performance of
our agent with the performance of simulated human behaviour. The human-like behaviour plays
a crucial role because when we assume that humans currently manage a supply chain, we are

interested in the cost reduction if we implement an intelligent agent.
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6 Numerical Results

Our framework allows each actor to follow its own policy. This leads to a variety of possible
policy constellations. Due to computational limitations, we only investigate the case where one
agent is a learning agent and all its co-players follow the same co-player policy. The learning
agent plays the role of the wholesaler. However, those experiments can be easily done for the
other agents or extended to multiple intelligent agents. We consider three types of policies for

the co-players: (i) a random policy, (ii) human-like (Sterman, 1989) and (iii) the base stock
policy.

To identify the different combinations, we introduce the notation of shape wholesaler policy-
co-player policy. For instance, DDPG-sterman represents the setup in which the DDPG

algorithm controls the wholesaler, whereas the co-players act upon the sterman formula.
We conduct the experiments for two demand distribution:

1. C(4,8) = In the classical demand distribution of Sterman (1989), the end-customer
orders 4 items in the first four periods and continuously 8 items afterwards.
2. U[0,8] = The demand is uniformly distributed between 0 and 8

We usually assume that our agents do not have information about the end-customer demand.
Anyhow, when the co-workers act randomly, we introduce some knowledge about the demand
distribution into the random policy. When we apply the classical demand distribution, the
randomly acting co-workers draw their actions uniformly from 0 to 15. When we investigate
the uniformly distributed demand, the randomly acting co-workers draw their actions from the
same distribution. Hence the orders are also uniformly distributed between 0 and 8. Enlarging
the upper boundary would increase the cost because the agents now regularly place orders that
exceed the possible end-customer demand. As a consequence, this leads to higher inventory
levels and holding cost. To avoid that the cost is artificially increased to make the algorithms
look better, we decided to infer the knowledge about the demand distribution. This information
only affects the randomly acting co-works, not the intelligent agents. They use their action space
as defined in section 5.1 and find reasonable policies on their own.

Demand Ch Cs BS level
C(4,8) [0.5,0.5,0.5,0.5] [1,1,1,1] [32, 32, 32, 24]
u[0,8] [0.5,0.5,0.5,0.5] [1,1,1,1] [19, 20, 20, 14]

Table 1: Cost structure and base stock levels



6 Numerical Results 32

Furthermore, the optimal base stock levels depend on the demand distribution. Cost parameters
and base-stock levels for both distributions are shown in table 1. The calculation of optimal
base stock levels is a non-trivial question. We refer to Clark and Scarf (1960) and Chen et al.
(1999) for further information. Within this study, we rely on values that have been previously

used for those demand distributions (Oroojlooyjadid et al., 2017).

The BDG environment and the algorithms themselves include a variety of variables. Appendix
B contains a full list regarding the parameter selection. Those variables can directly influence
performance. Some of the key variables are introduced in section 5.1. We conducted a grid
search to evaluate certain parameter combinations to find out a promising setup for our
numerical experiments. The feedback mechanism includes a regularisation coefficient 5.
According to Oroojlooyjadid et al. (2017), there is no simple rule to derive a value for 8. Hence
we tried two values (10 and 100) for beta within the grid search. We further included the number
of observed periods m (5 and 10) and the reward discount factor y (1 and 0.95). We conducted
the grid search for the discrete version of the BDG under the classical demand distribution. We
choose B = 100,m = 5 and y = 1. A larger m leads to better results, as more information is
included in the decision process. We still use m =5 because a larger m slows down the training
process. For different setups, there might be a better selection of those parameters, which is

subject of discussion. Appendix A shows the results of the grid search.

In the subsequent section, we take a look at the performance of our algorithms. We first consider
the case where our REINFORCE algorithm plays the discrete version of the game and then

have a closer look at the continuous variants.

6.1 Discrete REINFORCE algorithm

We trained the discrete REINFORCE agent for 1000 epochs under the classical and 1200
epochs under the uniform demand distribution. Although there still might be room for
improvement, we stopped training as we did not expect any major performance steps. We used
a batch size of 5000 and each game ended after 36 rounds. Hence one epoch includes 139
([5000/36] = 139) games played. Training for 1000 epochs contains the experience of 139

000 games. For the neural network, we used the Adam optimiser with a learning rate of 0.0001.

Under the classical demand distribution, we conducted three experiments with the discrete
REINFORCE algorithm. The wholesaler is played by the intelligent agent and his co-workers
acting upon one of the previously mentioned policies. Figure 5 displays the training process of

the REINFORCE-sterman setup. We see how the training process converges.
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Figure 4 Training process of the REINFORCE-sterman setup

Table 2 shows the results after training the agent for 1000 epochs. The rows indicate whether
the wholesaler was controlled by a known policy or our intelligent REINFORCE Agent. The
columns represent the behaviour of the co-workers. The base stock policy is optimal if all
players act according to it. Therefore, the cost of 180 is a lower bound. Note that under a
classical demand distribution, the system gets into a Nash equilibrium. All inventory levels are
0, and each agent only orders the locally observed demand. No agent has an incentive to show
different behaviour because this would subsequently lead to higher local and higher total cost.
The system remains at total expenses of 180 regardless of the length of the game. Hence for

longer games, it gets harder for our algorithms to approach the lower bound.

Co-players policy

classical uniform
wholesaler policy random base stock sterman random | base stock sterman
random 1.900,2 1.668,4  1.426,1 11359 808,8 892,8
base_stock 3.037,9 180,0 3.664,5 1119,3 677,7 1172,4
Sterman 1.831,2 2.865,0 2.049,0 1130,9 962,6 1058,8
Rf_discrete 1.755,5 415,5 594,4 1148,4 804,2 871,1
% Gap to Sterm. -4,1% -85,5% -71,0% 1,6% -16,5% -17,7%

Table 2: Performance of the discrete REINFORCE algorithm

However, if the co-players act according to a base-stock policy and the wholesaler acts human-
like the cost increase to 2865. Something similar happens when all players act human-like, but
the wholesaler is applying the optimal base-stock policy (3664). If at least one player does not
act according to the base-stock policy, the cost is no longer optimal. In fact, we observe the
opposite effect. If not applied by all players, it leads to some of the highest costs observed in
our experiments. We would like to draw special attention to the last row because it indicates
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the cost reduction if the intelligent algorithm replaces a human-like wholesaler. In the case of
the co-players following the base stock policy, it leads to a cost reduction of 85,5%. If the co-
players act human-like the cost decreases by 71%. Hence if we assume that not all players act
according to the base stock policy, then implementing the REINFORCE Agent leads to a

significant cost reduction, when the end-customer demand is classical.

Under uniformly distributed end-customer demand, the problem is more complicated because
we introduce randomness. Table 2 shows the performance of our agents under the uniformly
distributed demand. The system with all players acting according to the base stock policy does
not get into the Nash equilibrium. It is a stochastic value now. Remember that we inserted the
knowledge about the demand distribution into the random policy. We draw demand and actions
from the same distribution, which leads to a random policy that already seems quite good. If
we replace a human-like wholesaler by our intelligent agent, we can reduce cost in the
REINFORCE-base stock (16,5%) and REINFORCE-sterman (17,7%) cases. If we have random
demand and randomly acting co-players, then the REINFORCE wholesaler does not learn a
strategy to reduce the cost further. In fact, the cost slightly increases by 1,6%. Compared to the
performance of a human-like wholesaler, there is a reasonable cost-reduction overall.
Nevertheless, when we replace the wholesaler by a random-policy instead of the RL-algorithm,
we get almost equally good results. One might question the investment in an intelligent RL-
agent when just randomly drawing actions reduces cost comparably well. However, for the
random-policy, we assumed to know the underlying demand distribution. The REINFORCE
agent, on the other hand, learns to react to the demand distribution on its own.
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Figure 5: Cost reduction and mean of order quantities during the training process

When we have a closer look at what the RL-agents learn, we notice that the agent approximately

orders the mean of the demand distribution. In the U[0,8] case, this is equal to 4 (Fahrmeir et
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al., 2016). We see how the cost decreases while the agent approximates the mean of the demand

distribution within its orders (see figure 6).

6.2 Continuous policies

The continuous version of the BDG allows the placement of real-valued orders. The action
spaces basically remain the same, but orders can now take any value, not just natural numbers.
We no longer convert the order quantities calculated by policies known from the literature to
integers. This leads to slightly different benchmark values (see table 3). However, those values
are similar to those in the discrete case. Deviations are a result of rounding in the discrete case.
For the continuous version of the BDG, we applied the REINFORCE algorithm with gaussian
policy and the DDPG algorithm.

6.2.1 Reinforce with Gaussian policy
The continuous REINFORCE algorithm is applied together with a gaussian policy to handle

continuity. The sigma that is delivered by the neural network is activated with a Softplus
activation function. This activation function ensures that the sigma is positive. We observe
some instabilities during the training process, which seems to have numerical reasons. The
estimated variance gets so small that some of the log-probabilities reach infinity. Therefore, we
force the estimated sigma to a minimum value of 0.001 during the calculation of the log-
probabilities. We further apply gradient clipping and normalise the rewards to an [0,1] interval.
We also slightly change the algorithm in a way that when we created a batch of experience, we
take five consecutive update steps in a row. Those modifications stabilised learning. However,
as we can see in Table 3, the performance of the continuous REINFORCE (Rf-cont) is not as
good as the performance of the discrete REINFORCE, although we trained the continuous
version for 1000-5000 epochs. The varying duration of training is a result of a much slower
training process and later convergence. Due to computational limitations, we had to interrupt
the training process there. However, under the classical demand distribution, the continuous
REINFORCE algorithm reduces the cost by 74,6% when co-players act upon the base-stock
policy, and the intelligent algorithm replaces a human-like wholesaler (%Gap RF-Sterm.). The
cost reduction is 69,2% when playing with human-like co-players. We would like to draw
special attention to the performance of our algorithm with randomly acting co-players. The cost
increased by 176% and 68,2% for the classical and uniform demand distribution. Although we
did extend training up to 5000 epochs, we cannot observe convergence (Appendix C) and the
level of performance remains below the other algorithms.
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Co-players policy

classical uniform
wholesaler policy random \ base stock | sterman random | base stock sterman
random 1.815,6 12775 1.319,5 1.191,2 821,5 899,3
base stock 2.996,3 180,0 3.696,0 1.189,1 683,2 1.193,0
sterman 1.775,8 2.906,3 2.046,2 1.189,5 972,4 1.045,6
RF-cont 4901,2 737,6 616,2 1.984,1 780,1 763,3
%Gap RF -Sterm. 176,0% -746%  -69,2% 68,2% -19,8% -27,0%
DDPG 1.544,9 256,9 467,4524 2001,1 774,8 1.150,9
%Gap DDPG- Sterm. -13,0% -912%  -77,2% 14,1% -20,3% 10,1%

Table 3: Performance of algorithms with continuous action space

6.2.2 Deep Deterministic Policy Gradient
The DDPG algorithm uses a replay buffer for learning. To fill the replay buffer, we introduce

a warm-up phase of 1200 games. During the warm-up phase, actions are randomly chosen, and
the transitions are added to the replay buffer. For the classical demand distribution, the DDPG
algorithm is trained for 5000 epochs. The DDPG algorithm decreases the cost significantly,
regardless of the policy applied by its co-players (Table 3). Especially within the DDPG-(base
stock) case, the DDPG agent seems to be approximating the optimal base stock cost of 180.
Compared to a human-like wholesaler, the intelligent agent can reduce cost by 91.2%. If the
co-players act upon a base-stock policy, the DDPG agent decreases cost by 77.2%. Under
uniformly distributed demand, we observe a slight cost increase when the DDPG plays with
randomly and human-like co-players (14,1%, 10,1%). When playing with base-stock co-players
cost are reduced by 20,3%. Overall, it seems like the DDPG algorithm delivers a strong
performance under the classical demand but has some difficulty when demand is uniformly
distributed.

6.3 Benchmarks from literature and comparison of algorithms

It is reasonable to compare our results with the results obtained by Oroojlooyjadid et al. (2017)
with the DQN Network. We closely followed their methodology but applied a different class
of algorithms. However, to draw a fair comparison, it is essential to check whether we use the
same benchmarks. Oroojlooyjadid et al. (2017) also implement the formula of Sterman (1989).
Given the information in their paper, it was not possible to recreate the exact scores they are
using in their web-application. Hence we based our implementation on the mathematical model
and its corresponding R-implementation of Edali and Yasarcan (2014). The minor differences
should be a result of the choice of some parameters and a slightly different calculation of
expected demands. Whereas they use the mean of observed demands, we apply the original

exponential smoothing proposed by Sterman (1989). The sterman formula includes some
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parameters reflecting how the human-like player over and underreacts to certain situations. By
adjusting those parameters, we can directly influence the cost. A game of 36 rounds with only
human-like players leads to a total cost of 2208,5 in Oroojlooyjadid et al. (2017). To get similar
cost we used alpha = 0.5 and beta = 1 in the sterman formula, which leads to the total cost of
2049. However, it was not possible to achieve the exact same values, so comparing the

performance concerning the sterman formula should be done with caution.

Table 4 and 5 display the performance of our three algorithms, together with the performance
of the DQN algorithm implemented by Oroojlooyjadid et al. (2017). They trained their DQN
algorithms for at least 60 000 episodes which significantly exceeds the 5000 episodes of our
DDPG algorithm. Our REINFORCE (RF) algorithms are trained in between 1000 and 5000
epochs including the information of 139 000 — 69 5000 episodes of the game. With more
training and an optimised parameter selection, our algorithms might even further improve.
Table 4 shows the performance when the co-players act according to the base stock policy.
Oroojlooyjadid et al. (2017) normalised the cost. Hence the absolute values do not have a

meaningful interpretation.

Classical Uniform
Wholesaler *-bs ‘ bs-bs Gap *-bs bs-bs Gap
DQN 0,47 0,34 38,24% 960,4 799,2 20,18%
RF-discrete 415,5 180 130,85% 804,2 677,7 18,66%
RF-cont. 737,6 180 309,781% 780,1 683,2 14,18%
DDPG 256,9 180 42,72% 774,8 683,2 13,40%

Table 4: Performance comparison with co-players following the base stock (bs) policy

We draw special attention to the “Gap” column. It represents the actual performance gap. The
*-pbs column represents the cost occurring when one of the intelligent algorithms plays the
wholesaler, and the co-players follow the base stock policy. The second column represents the
cost arising when we replace the wholesaler by the base stock policy. The gap column
represents the difference between those two values. It can be positive or negative, reflecting the

fact that the algorithms might perform better or worse than the values in the second column.

In all cases, the gap is positive indicating that our algorithms perform worse than the bs-bs
policy. This is reasonable as the base stock policy is optimal and we use its cost as a lower
bound. The gap implies how close we get towards this lower bound. For the classical demand
distribution, we see that the DQN and the DDPG algorithm outperform the discrete
REINFORCE (RF-discrete) and continuous REINFORCE (RF-cont.). The gap of 38 % and
42% indicate that the DQN and DDPG perform similarly well. The discrete REINFORCE with
a gap of 130% and the continuous REINFORCE with a gap of 309% are not compatible. When
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we take a look at the uniform distribution, we see that the policy-gradient methods (18,66%,
14,18%, 13,4%) outperform the action-value method (DQN = 20.18%). Whereas the
continuous REINFORCE algorithm delivered the weakest performance under the classical
demand distribution, it shows the second-best performance under uniformly distributed
demand. Overall, the policy-gradient methods seem to handle uniformly distributed demand
better when playing with base stock co-players. It is also noticeable that the DDPG algorithm
performs on the same level as the DQN, although it was only trained for 5000 episodes whereas
the DQN was trained for 60.000 episodes.

Table 5 displays the performance when the co-players act human-like. The *-sterm column
represents the performance when an intelligent agent plays the wholesaler, and the co-player
follow the sterman formula. The bs-sterm column monitors the performance when a base-stock
policy replaces the wholesaler. Under the classical demand distribution, we observe that the
policy-gradient methods outperform the DQN algorithm. The DDPG Method performs best
with a cost reduction of 87% compared to a bs-sterm setup. When the demand distribution
changes, we observe the opposite scenario. The DQN algorithm outperforms the policy-
gradient algorithms. The continuous REINFORCE variant is the only policy-gradient method
that is compatible with the DQN in this scenario. The DDPG performs best under classical

demand but is the weakest performer when demand is uniformly distributed.

Classical Uniform
Wholesaler *-sterm ‘ bs-sterm ‘ Gap *-sterm ‘ bs-sterm ‘ Gap
DQN 2,85 8,17 -65,12% 59 9,53 -38,09%
Rf-discrete 5944 3.664,5 -83,78% 871,1 1.172,3680 -25,70%
Rf-cont 616,2 3.696,0 -83,33% 763,3 1.193,0 -36,02%
DDPG 467,5 3.696,0 -87,35% 1.150,9 1.193,0 -3,53%

Table 5: Performance comparison with co-players following the sterman formula

Overall policy gradient methods can compete with the action-value based DQN approach of
Oroojlooyjadid et al. (2017). Especially the DDPG agent and DQN agent perform comparably
well. The simple policy gradient method REINFORCE also delivers a highly competitive
performance except for the case when the co-players apply the optimal base-stock policy, and
the demand is classical. Each algorithm seems to have some strengths and weaknesses

depending on the particular setup comprising end-customer demand and co-player policies.
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7 Conclusion

We developed a framework to test different reinforcement learning algorithms for the Beer
Distribution Game (BDG). The game has a variety of features that complicate the problem. It
only has partially observable states, the actors play cooperatively, and there is no information
sharing during the game. Oroojlooyjadid et al. (2017) introduced a DQN algorithm addressing
those complicating features. We implemented some of their mechanisms and applied them
together with policy-gradient reinforcement learning algorithms. We further extended the setup
to a continuous variant of the game. Hence action and state-space get real-valued. The
framework allows various configurations, where every single actor within the supply chain can
individually follow its own policy. Thereby we have options to choose among one of the known
policies from literature: (i) the optimal base-stock policy, (ii) human-like behaviour and (iii) a
random policy. We can also replace every actor with an intelligent RL-algorithm. Within the
scope of this study, we limited ourselves to the case where only one actor of the supply chain
is a learning agent. Nevertheless, we suggest investigating multi-agent learning based on our

framework.

In our numerical experiments, the RL-algorithms replaced the wholesaler, and its co-players
followed one of the three well-known policies mentioned above. Thereby the agents faced two
different end-customer demand distributions. The first demand distribution is constant after
some time and was defined by Sterman (1989). The second demand distribution is uniformly
distributed within a certain range. We employed a discrete REINFORCE and a continuous
REINFORCE variant, as well as the Deep Deterministic Policy Gradient (DDPG). All methods
are capable of finding ordering policies that lead to a significant cost reduction. However, the
algorithms are quite sensitive to specific settings. Considering the classical demand distribution
defined by Sterman (1989) and a human-like supply chain, then replacing the wholesaler by our
intelligent agents leads to a cost reduction of at least 69%. If we examine the same setting with
the uniform demand distribution, only the REINFORCE algorithms lead to a cost reduction.
The DDPG algorithm even slightly increases the cost. We suggest a closer investigation of the
reasons why those algorithms have strengths and weaknesses under different demand
distributions. Nevertheless, in comparison to the DQN algorithm proposed by Oroojlooyjadid
et al. (2017), our algorithms perform comparably well. Primarily the DDPG agent reaches the
same level of performance, although either one has some benefits depending on the particular
setup. Due to computational limitations, the training time and parameter selection was

restricted. Hence there still might be upward potential that remains unexplored.
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Policy-gradient methods have a variety of features that favour exciting research questions.
They, for instance, can be used to improve supply chains trading multiple items. We
demonstrated that they could significantly reduce cost and deliver similar performances as
action-value approaches when solving the beer distribution game. With this thesis, we created

a starting point for future research regarding policy-gradient algorithms in serial supply chains.
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A Appendix

BDG Parameter Selection

A Appendix
n_observed n_observed
rounds 5 rounds 10
discount discount
beta 1|0.95 beta 1]0.95
10 743,455 854,904 10 859,355 525,1535
100 635,42 1579,036 100 514,109 537,7645
B Appendix

Cost hold [0.5,0.5,0.5,0.5]

Cost stock [1,1,1, 1]

Lship [2,2,2,2]

L lead [2,2,2,1]

Demand_dist {classical, uniform 0 8}
M (n_observed periods) 5

N (n_turns_per game) 36

Discrete

{true, false}

Action_Space

16

Parameters for REINFORCE Training

Learning_rate 0.0001
Sizes [20, 32,32] Input Size & Sizes of hidden layers
n_actions 16 Size of output
Batch_size 5000
Beta 100 Feedback (Formula 14)
Gamma 1 Reward (Formula 3)
Parameters for DDPG Training:
Alpha 0.000025 Learning rate actor network
Beta 0.00025 Learning rate critic network
Tau 0.001
Batch_size 32
Layerl size 400
Layer2 size 300
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C Appendix

Training process of the continuous REINFORCE-Random setup. No convergence observed
after 5000 training epochs

Cost reduction
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D Appendix

We trained the REINFORCE with gaussian policy under classical demand and co-players
following the Sterman formula. On the right figure the continuous orders have been
mathematically rounded, whereas on the left the continuous version of the game was played
(no rounding). When evaluating both algorithms the continuous REINFORCE leads to cost of
616 and the rounded continuous REINFORCE leads to cost of 636.
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