

Technical University of

Munich

Department of Informatics

Bachelor’s Thesis in Informatics

Reinforcement Learning in the MIT Beer Distribution Game

Author: Daniel Schroter

Supervisor: Prof. Dr. Martin Bichler

Advisor: Stefan Heidekrüger

Submission: 14.10.2020

I assure the single-handed composition of this bachelor’s thesis only supported by declared

resources.

Munich, 14.10.1996

(Daniel Schroter)

 iii

Abstract

In serial supply chains, humans tend to show irrational behaviour leading to high cost. The beer

distribution game is often taught in management classes to demonstrate the bullwhip effect - a

phenomenon describing that orders from the supplier tend to have a higher variance than sales

to the buyer. This distortion leads to fluctuations in inventory levels, causing unnecessary high

costs. The optimal ordering policy is already known, but unfortunately, humans usually tend to

show different behaviour. Hence, we investigate whether reinforcement learning can derive

better ordering policies. Thereby the co-players of our intelligent agent either act randomly,

optimally or human-like (Sterman formula, 1989). So far, mainly action-value reinforcement

learning algorithms have been implemented to solve the beer distribution game. The game is

originally defined as a discrete setting (discrete order quantities), which might be the reason

that policy-gradient algorithms have not been considered yet. However, in many economic

situations, a continuous version of the game is applicable. The ordered quantities, for instance,

are so high, that simply rounding them has no major economic impact. Policy-gradient methods

have features that can deliver a valuable contribution to research. They can be easily extended

from one-dimensional decision making to multi-dimensional decision making. Hence, they can

be used to improve supply chains trading multiple items. We create a discrete and continuous

game environment that allows a simple experimentation with reinforcement learning

algorithms. We further implement the policy-gradient methods REINFORCE and Deep

Deterministic Policy Gradient (DDPG). Within this study, we show that they perform on the

same level as the current state of the art action-value approaches. Thereby we create a starting

point for future research with policy-gradient algorithms in serial supply chains.

 iv

Table of Contents

Abstract ... iii

Table of Contents .. iv

List of Figures .. v

List of Tables ... vi

List of Abbreviations .. vii

1 Introduction .. 8

2 The Beer Distribution Game .. 10

3 Literature Review ... 12

3.1 Current State of the Art ... 12

3.2 Our Contribution .. 14

4 Theoretic Introduction .. 15

4.1 Introduction to Reinforcement Learning ... 15

4.2 Policy-gradient algorithms .. 18

4.2.1 REINFORCE .. 19

4.2.2 Deep Deterministic Policy Gradient .. 21

5 Experimental setup ... 26

5.1 Algorithmic key components ... 26

5.2 Our experimental framework ... 28

5.3 Training and Evaluation process ... 29

6 Numerical Results .. 31

6.1 Discrete REINFORCE algorithm .. 32

6.2 Continuous policies ... 35

6.2.1 Reinforce with Gaussian policy ... 35

6.2.2 Deep Deterministic Policy Gradient .. 36

6.3 Benchmarks from literature and comparison of algorithms 36

7 Conclusion .. 39

References: ... 41

A Appendix .. 44

B Appendix .. 44

C Appendix .. 45

D Appendix .. 45

 v

List of Figures

Figure 1: Beer Distribution Game Overview (Retrieved from:

https://beergame.opexanalytics.com/#/ , 10.07.2020) .. 10

Figure 2: The agent-environment interaction in an MDP, Sutton and Barto (2018, p.48) 16

Figure 3: Software Architecture of the Experimental Framework ... 29

Figure 4 Training process of the REINFORCE-sterman setup .. 33

Figure 5: Cost reduction and mean of order quantities during the training process 34

https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561244
https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561244
https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561245
https://d.docs.live.net/7ce56eb57c0014c8/Dokumente/Studium/TUM/Kurse/Informatik/BA/BA_Daniel_Schroter_Informatik.docx#_Toc53561248

 vi

List of Tables

Table 1: Cost structure and base stock levels ... 31

Table 2: Performance of the discrete REINFORCE algorithm .. 33

Table 3: Performance of algorithms with continuous action space ... 36

Table 4: Performance comparison with co-players following the base stock (bs) policy 37

Table 5: Performance comparison with co-players following the sterman formula 38

 vii

List of Abbreviations

AO = Arriving order

ANN = Artificial Neural Network

AS = Arriving Shipments

BDG = Beer Distribution Game

bs = Base stock

Dec-POMDP = Decentralised partially observable Markov decision processes

DDPG = Deep Deterministic Policy Gradient

DQN = Deep Q Network

IL = Inventory Level

MDP = Markov decision processes

OO = On-order items

POMDP = Partially observable Markov decision processes

RF = REINFORCE

RL = Reinforcement Learning

Sterm. = Sterman

1 Introduction 8

1 Introduction

The Beer Distribution Game (BDG) simulates a serial supply chain consisting out of a

manufacturer, a wholesaler, a distributor, and a retailer. Each has local information about

incoming orders and can order beer from his immediate upstream neighbour in the supply chain.

The game is often taught in management classes as it triggers the Bullwhip effect, a

phenomenon describing that the stocks of the actors have high fluctuations leading to

unnecessarily high costs. It is known that a base-stock-policy would lead to a cost minimum

(Clark and Scarf, 1960). However, due to batch ordering, discounts and other reasons, managers

tend to show different behaviour leading to inefficiencies.

Reinforcement Learning (RL) has gained much interest through its advancements in playing

games like Atari and GO. It can be generally applied to settings where a learning agent interacts

with an environment to achieve a goal (Sutton and Barto, 2018, p. 2). The beer distribution

game is such a setting, which leads to the question of whether RL can find good ordering

policies resulting in efficiency gains. Within this study, we replace the wholesaler with different

RL algorithms and let them play with co-players that act randomly, optimally, or human-like

(Sterman formula, 1989).

Reinforcement Learning incorporates several classes of algorithms. So far, mainly action-value

methods have been implemented to solve the BDG. Oroojlooyjadid et al. (2017), for instance,

implement a DQN algorithm that identifies efficient ordering policies. The original BDG is

formulated as a game with discrete action space (discrete order quantities). This might be a

reason why the class of policy gradient algorithms has not been considered for solving the BDG

yet. However, in many economic situations, a continuous version of the game is applicable. For

instance, if the ordered quantities are so high, that simply rounding them has no major economic

impact. Even if we do not want to deal with real-valued order quantities and incorporate

rounding into the continuous policy-gradient methods, their training process seems to get

delayed but not prevented. On the other side, policy-gradient methods incorporate a variety of

features that can deliver a valuable contribution to the research. They can be easily extended

from one-dimensional decision making to multi-dimensional decision making. Hence, they can

be used to investigate supply chains trading multiple items.

Within this thesis, we create a framework that allows the simple experimentation with RL-

algorithms playing the beer distribution game. Thereby we implement a discrete and continuous

game environment and the known policies from the literature. The BDG has some complicating

1 Introduction 9

properties such as limited information sharing among the actors during the gameplay.

Oroojlooyjadid et al. (2017) introduced some mechanisms to cope with those complicating

features. We implement some of their approaches and employ them together with the policy-

gradient methods REINFORCE and Deep Deterministic Policy Gradient (DDPG). We conduct

several numerical experiments, where our algorithms act in different settings comprising

different end-customer demand distributions and co-player policies. We show that they can

reduce the cost by up to 77% when replacing the wholesaler in a human-like supply chain with

the intelligent agent (DDPG). We further show that they perform on the same level as the

current state of the art action-value approaches (DQN). With this thesis, we create an entry

point for future research regarding policy gradient methods in serial supply chains.

The study has the following structure: (2) an introduction into the beer distribution game, (3) a

brief overview of the literature, (4) a theoretic introduction into the applied reinforcement

learning algorithms, (5) the experimental setup, (6) the numerical experiments and performance

of the policy-gradient algorithms, (7) a conclusion about the application of policy-gradient

algorithms.

2 The Beer Distribution Game 10

2 The Beer Distribution Game

The Beer Distribution Game (BDG) simulates a supply chain consisting out of a manufacturer,

a wholesaler, a distributor, and a retailer. Each has local information about incoming orders and

can order beer from his immediate upstream neighbour in the supply chain. The game is often

taught in management classes as it triggers the Bullwhip effect, a phenomenon describing that

the stocks of the actors have high fluctuations leading to unnecessarily high costs for the total

supply chain (Sterman, 1989). We assign the numbers 1 to 4 to the actors representing the

supply chain from the retailer to the manufacturer (figure 1). The game is organised in 𝑇 rounds

in which each agent observes the local demand, receives shipments and places replenishment

orders 𝑞𝑡
𝑖. The goal of each agent is not to minimise its local cost, but the cost of the total supply

chain. Hence the players act cooperatively as a team. The following formula describes the total

cost:

𝑇𝐶 = ∑ ∑ 𝑐ℎ
𝑖 ∗ max{0, 𝐼𝐿𝑡

𝑖 } + 𝑐𝑠
𝑖 ∗ max {0, −𝐼𝐿𝑡

𝑖 }

4

𝑖=1

𝑇

𝑡=1

 (1)

The formula accumulates over all rounds and all agents the costs that occur concerning the

inventory level 𝐼𝐿𝑡
𝑖 . So for each agent 𝑖 we specify the holding cost 𝑐ℎ

𝑖 and stockout cost 𝑐𝑠
𝑖. The

inventory level can be positive or negative. If it is negative, there are backorders, and stockout

cost occurs. For positive inventory levels, there are units at hand, and holding cost occurs. The

first term represents the holding cost if there is an inventory on hand. The second term

represents the stockout cost if there are backlogged items (negative inventory level)

(Oroojlooyjadid et al.,2017).

Figure 1: Beer Distribution Game Overview (Retrieved from: https://beergame.opexanalytics.com/#/ , 10.07.2020)

https://beergame.opexanalytics.com/#/

2 The Beer Distribution Game 11

Shipments and Orders do not immediately reach the customer or supplier, respectively. They

need some time to be processed and shipped. Hence for each agent, we further specify a

shipment lead time 𝑙𝑠ℎ𝑖𝑝
𝑖 and an order lead time 𝑙𝑜𝑟𝑑𝑒𝑟

 𝑖 . The shipment lead time describes the

delay of shipments from the supplier to the agent. The order lead time specifies the number of

rounds that the order is delayed on the way from an agent to its supplier (see figure 1).

The game lasts several rounds. Usually, the players do not know the number of rounds 𝑇 to

avoid horizon effects. Each round requires all agents to carry out five steps (Sterman, 1989):

1. Receive inventory and move shipments. The arriving shipment is added to the inventory.

Shipments that are travelling from supplier to the agent are moved one step towards the

agent. The number of delays between agent 𝑖 and 𝑖 + 1 is defined by 𝑙𝑠ℎ𝑖𝑝
𝑖

2. Fill orders. Agents examine the arriving order. Orders are filled to the extent that

inventory levels permit. Ordered goods that cannot be delivered add up to the backlog

(negative inventory level). The amount that must be delivered incorporates the negative

inventory level, if any, and the incoming order. The outgoing shipment is placed on the

shipment delay of agent 𝑖 − 1.

3. Inventory level is updated

4. Move orders in the order delay. Inbound orders that are ordered from agent 𝑖 by

customer 𝑖 + 1 are moved one step towards agent 𝑖. The number of delays is defined by

𝑙𝑜𝑟𝑑𝑒𝑟
𝑖

5. Place orders. Each agent decides how much to order 𝑞𝑡
𝑖 and places the order into the

order delay.

The retailer and manufacturer need some side notes, as they represent the tails of our supply

chain. There is an external demand distribution that simulates the orders arriving at the retailer.

The manufacturer has no supplier, but he can produce the item. So instead of a shipment delay,

it can also be called production delay describing the time needed to produce an order. Only step

five requires a decision to be made by the agent (Sterman, 1989). The agents do not share

information during the game. Only after the game has finished, the agents know the total cost

that occurred. In this thesis, we will examine whether an intelligent agent will find a way to

reduce cost.

3 Literature Review 12

3 Literature Review

3.1 Current State of the Art

The beer game is a serial supply chain network and research dealing with such networks is

closely related to the beer game setting. There is extensive research covering various aspects of

this setting. Such aspects include modelling human behaviour, investigating the role of

communication or designing models to derive optimal ordering policies. In this thesis, we

implement the BDG and reinforcement learning algorithms to find good ordering policies.

Therefore, we mainly focus on research coping with models that deal with ordering policies.

However, Martinez-Moyano et al. (2014) provide an overview of the history of the BDG and

its rule changes over time. Over the years several variants of the Beer Distribution Game

evolved. In this thesis, we rely on the version defined by Sterman (1989) and refer to it as the

classical BDG setting in the following. The strategy that leads to minimal cost in this setting is

already known. It is called the base-stock policy (Chen, 1999) and only results in minimal cost

if applied by all players.

Within the base-stock policy, each agent has a certain inventory-level, called the base-stock

level. Further, there is a value called the installation stock. It comprises the on-hand inventory

minus the backlogged orders plus the outstanding orders. The agent chooses an order quantity

to keep its installation stock equal to the base-stock level. The calculation of optimal base-stock

levels is a non-trivial question. Clark and Scarf (1960) suggest a way to calculate the optimal

base-stock levels under certain assumptions such as random customer demand and stockout

cost at the retailer. Our classical BDG does not fulfil those assumptions. Oroojlooyjadid et al.

(2017) use a heuristic approach similar to the methods suggested in Graves (1985) to choose

the base-stock levels. We will rely on the values for the base-stock levels they used within their

study.

However, due to incomplete information, batch ordering, discounts and other reasons, managers

tend to show different behaviour leading to the “Bullwhip effect” (Lee et al., 1997). The

bullwhip effect describes a phenomenon where orders to the supplier tend to have a larger

variance than sales to the buyer. This distortion propagates upstream in an amplified form (Lee

et al., 2004). As a result, there are high fluctuations in inventory levels leading to unnecessary

high cost. Lee et al. (1997) and Sterman (1989) examine some of the rational and behavioural

reasons. There are several approaches to solve the Bullwhip problem. Wu and Katok (2006),

for instance, investigate how communication affects performance during the game. Ponte et al.

(2016) investigate methods for profit allocation and corresponding incentives. Sterman (1989)

3 Literature Review 13

introduced a formula that reflects how human-players over or under-react when they observe

large shortages or excess inventory. Note that he does not focus on deriving an optimal ordering

policy but instead aims at modelling human behaviour. Therefore, his research is crucial to our

study. To decide whether an algorithm should be implemented, it might be valuable to check

whether it performs better than humans. Hence his formula will serve as an essential baseline

of performance. There are some extensions to the Sterman formula. Strozzi et al. (2007), for

instance, use a genetic algorithm to generate the coefficients of the Sterman formula.

For cooperative games, Claus and Boutellier (1998) differentiate between independent learners

and joint action learners. Independent learners have no information about the state of the other

players, whereas joint action learners share information about their states. The BDG does not

allow information sharing during the game. Hence the actors can be classified as independent

learners. Claus and Boutellier (1998) further investigate the behaviour of reinforcement

learning algorithms in simple multi-agent games and their convergence to certain equilibria.

We will see that under certain assumptions, our game converges into a stable state. If the actors

follow the base-stock policy and the end-customer demand is distributed as defined by sterman

(1989) the inventory levels of our players converge to 0. They will further just be ordering the

arriving demands. Every other action would increase their local inventory and subsequently,

the local and total cost. Hence there is no incentive for the agents to change their behaviour.

Oroojlooyjadid et al. (2017) review some of the algorithms that seek to derive good ordering

policies. Kimbrough et al. (2002) implement a genetic algorithm to search for optimal ordering

rules. The rules they formulate are of shape 𝑑 + 𝑥 where each agent observes the local demand

𝑑 and chooses 𝑥 such that the sum is the ordered quantity. Giannoccaro and Pontrandolfo (2000)

and Chaharsooghi et al. (2008) use RL to solve the BDG. Their state variables are the inventory

positions of the agents, discretised into 9 and 10 intervals, respectively. Both papers assume

information sharing across the agents to simplify the problem. This is why Oroojlooyjadid et

al. (2017) identify a gap in academic research. To close this gap, they implement an action-

value algorithm (DQN) to solve the classical beer distribution game. To avoid information

sharing, they suggest a feedback scheme as a communication framework. In their setting the

algorithm only controls one agent meanwhile the other agents are controlled by simple formulas

(i.e. Sterman & base-stock) or by human players. We will be closely following their approach

throughout this thesis. However, instead of applying an action-value RL algorithm such as

DQN, we will transfer some of their ideas to the family of policy-gradient RL algorithms.

3 Literature Review 14

3.2 Our Contribution

We create a software environment that facilitates the examination of RL algorithms within the

beer distribution game. Our implementation offers a variety of different scenarios and can be

configured as a discrete or a continuous version of the game. Both versions differ in a way that

the continuous version allows real-valued order quantities. We further include different demand

patterns and methods to simulate the behaviour of the agents. For every agent, we may decide

whether we want him to be the intelligent learning agent or whether he should act optimally

(base-stock), randomly or human-like (Sterman, 1989).

Merely replacing the agents with RL algorithms does not solve the problem. Some traits like

the decentralised decision making, cooperative goal and lack of information sharing complicate

the problem (Claus and Boutilier, 1998). To address those issues, Oroojlooyjadid et al. (2017)

introduced some mechanisms that allow a DQN-algorithm to solve the classical BDG. They,

for instance, introduced a feedback scheme that enables the training of the DQN algorithm,

although there is no information sharing during the game. Those mechanisms are

reimplemented and adopted to allow a respective training of policy-gradient algorithms.

Policy-gradient algorithms can comfortably handle continuous game settings. At first sight, it

might be surprising to implement a continuous variant of the game, as we are not able to order

fractions of goods in economic reality. Nevertheless, in many economic settings, the amount of

ordered goods is so high, that simply rounding the ordered numbers at the end should not have

a major economic impact. Incorporating the rounding directly into the algorithm did not lead to

significant performance losses, although it increases the training time required (Appendix D).

Policy-gradient methods are not just easily applicable to the continuous setting but also offer

other advantages. They can be easily extended from one-dimensional decision making (ordering

beer) to multi-dimensional decision making (i.e. ordering beer and soft drinks). This study

should deliver an entry point and experimental framework for such future research question.

Policy-gradient methods have not been considered for the BDG so far and should, therefore, be

examined for the problem at hand. Within this thesis, we implement two policy-gradient

algorithms. The REINFORCE algorithm (Sutton and Barto, 2018, p. 326) is applied to the

deterministic and the continuous version of the game, and the Deep Deterministic Policy

Gradient (DDPG) (Lillicrap et al.,2015) is applied to the continuous variant. We will further

compare the performance of the algorithms to the action-value method introduced by

Oroojlooyjadid et al. (2017)

4 Theoretic Introduction 15

4 Theoretic Introduction

4.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is about learning what action to take in a particular situation to

maximise a specific reward (Sutton and Barto, 2018, p. 3). Thereby a software agent interacts

with an environment and tries to discover behaviour leading to a specific goal. This goal is

reflected by rewards that the agent can get for his actions. It usually tries to maximise rewards.

For favourable actions, he receives a higher reward. One characteristic of RL is that the learner

is not guided towards the desired behaviour. It has to discover actions leading to higher rewards

by trial and error. This leads us to another key feature of RL, the exploration-exploitation

dilemma (Sutton and Barto, 2018, p. 1f). To receive a high reward, an agent should choose

actions which turned out to be successful in the past (exploit). To identify those actions, it must

try new behaviour. In other words, it must explore its opportunities. Neither exploration nor

exploitation can be pursued exclusively without failing the task. If exploitation is done too

extensively, the agent just misses valuable actions. If the agent focuses too much on exploring

the world, he does not maximise its rewards representing the proper goal (Sutton and Barto,

2018, p 3). However, it is a crucial characteristic of RL, and we will see how the different

algorithms address this issue.

Another typical feature of RL is the delay between actions and their rewards. Some actions

might not just influence the immediate rewards but also the following situation and hence all

subsequent rewards. So, there might be a delay between actions and rewards (Sutton and Barto,

2018, p. 1). RL is especially applicable when we have an agent interacting with an environment.

This usually involves sequential decision making, as the agent is constantly facing new

situations and acting upon them. This makes RL an area of machine learning that is especially

suitable for sequential decision making (Sutton and Barto, 2018, p. 47). Typical fields of

application include games, robotics or business management (Li, 2017).

Those sequential decision processes can be formalised by the concept of Markov Decision

Processes (MDP). We consider an agent interacting with an environment (see figure 2). In each

time step 𝑡 the agent observes the current state 𝑆𝑡 ∈ 𝑺 of the environment and decides which

action 𝐴𝑡 ∈ 𝑨(𝒔) to take (The set of possible actions depends on the current state). The

environment transitions into the next state 𝑆𝑡+1. As a consequence of its action, the agent

receives the reward 𝑅𝑡+1 ∈ 𝑹 ⊆ ℝ.

4 Theoretic Introduction 16

Where 𝑺, 𝑨, 𝑹 are the sets of all possible states, actions and rewards, and they are usually finite.

Through the interaction with the environment the agent creates a trajectory of states, actions

and rewards: 𝑆0 𝐴0𝑅1𝑆1𝐴1𝑅2𝑆2 … 𝐴𝑇−1𝑅𝑇𝑆𝑇 . Our beer game is an episodic setting. This means

that there is a natural end of a trajectory (number of rounds played per game). Afterwards, the

game starts again, which is independent of how the previous game ended (Sutton and Barto,

2018, p. 54). At each state during the interaction, we can calculate the probability to transition

into the next state and observe a particular reward. The probability of getting into the state 𝑠′

and receive reward 𝑟 if the previous state and the corresponding action are given can be

calculated by (Sutton and Barto, 2018, p. 48):

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) = 𝑃𝑟(𝑆𝑡 = 𝑠′, 𝑅𝑡 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎) (2)

The probability for each combination of 𝑆𝑡 and 𝑅𝑡 only depends on the preceding state and

action. For each action, the agent receives a reward. We do not want to maximise the reward

for a single action but a series of actions. Hence the agent’s goal is to maximise the total amount

of rewards it receives. This leads us to the definition of the return 𝐺𝑡. The return is a function

of the rewards. The simplest case is just the sum of future rewards 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ +

𝑅𝑇. Especially in very long-term settings or continuing cases, the reward can quickly get

towards infinity. Therefore, the rewards are often discounted 𝛾 in a way that the return

converges (Sutton and Barto, 2018, p. 54f). The return is then defined as:

𝐺𝑡 = ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0
 𝑤𝑖𝑡ℎ 𝛾 ∈ (0,1] (3)

Note that the BDG is episodic and in this study considered as relatively short term. However,

we included the discounted version to allow experiments with longer runs of the game and to

check whether it influences performance. As we do not know deterministically the rewards that

we receive in the future, we define our goal as maximising the expected return. Many RL

algorithms further use the estimation of value functions. Those functions indicate “how good”

it is for an agent to be in a specific state or to be in a specific state and take a particular action.

Figure 2: The agent-environment interaction in an MDP, Sutton and Barto (2018, p.48)

4 Theoretic Introduction 17

The “how good” is related to the expected return. This return depends on the current state and

the actions that the agent is going to take in the future. To define value functions, we need a

concept describing the way the agent acts in certain situations. This behaviour is formalised

within the idea of policies 𝜋. In each time step, the agent finds itself in state 𝑆𝑡 = 𝑠 and chooses

the action 𝐴𝑡 = 𝑎 according to a particular policy 𝜋. Thereby 𝜋(𝑎|𝑠) = 𝑃𝑟(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠)

defines the probability of taking action 𝑎 given the state 𝑠 at time-step 𝑡. The core of RL

algorithms is to change the agent’s policy in a way that a higher return is expected (Sutton and

Barto, 2018, p. 54f).

With the definition of the policy, we have the ingredients to define value functions. The state-

value function 𝑣𝜋 describes the expected return if we consider ourselves in state 𝑠 and the agent

acts according to the policy 𝜋 until the rest of the game.

𝑣𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸𝜋 [∑ 𝛾𝑡

𝑇

𝑘=0

𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠] , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑺 (4)

The action-value function 𝑄𝜋 describes the expected return, if we consider ourselves in state 𝑠,

take action 𝑎 and then follow the policy 𝜋 until the rest of the game.

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝐸𝜋 [∑ 𝛾𝑡

𝑇

𝑘=0

𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5)

If 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) is given, then optimal policies can theoretically be found through dynamic or

linear programming. However, in many practical applications (e.g. the beer game), we deal with

large state and action spaces. The methods to find optimal solutions often require more

computational power than available. One fundamental property of RL is to approximately solve

MDPs (Sutton and Barto, 2018, p. 67f).

The beer game setting has some properties that further complicate the problem. The state

variable is not fully accessible to the agent. In other words, the state of the environment can

only be partially observed by the agent. This scenario is formalised by partially observable

Markov decision processes (POMDP) (Sutton and Barto, 2018, p. 466f). Furthermore, there is

an intelligent agent which can only observe partial information but must cooperate in a

decentralised manner with multiple other agents to achieve a common goal. Such problems are

called Dec-POMDP, and according to Bernstein et al. (2002), the problem is NEXP-complete.

There is no polynomial-time algorithm and probably even no exponential-time algorithm that

solves the problem. We will investigate whether reinforcement learning can find an

approximate solution.

4 Theoretic Introduction 18

The interested reader recognises that we introduced finite MDP. The state, action and reward

spaces are finite sets. This formalisation is applicable when we deal with discrete settings. As

already mentioned, we extend the BDG towards a continuous setting. The state and action space

incorporate an infinite set of real-valued numbers. The underlying logic of the MDP remains

the same. A formalised mathematical description of MDP with infinite sets requires more

complex notations without providing valuable information for this study. Hence, we will stick

to the discrete notations.

4.2 Policy-gradient algorithms

In Reinforcement Learning, there are two main areas when it comes to approximate solution

methods. Action-value methods learn the value of actions and then select the action based on

the estimated action value. Q-Learning, for instance, is a method where the action-value

function Q is learned. The Deep Q-Learning (DQN) applied by Oroojlooyjadid et al. (2017) is

such a method. The policy is indirectly improved by updating the learned Q-function (Sutton

and Barto, 2018, p. 131). Because of estimating the value of actions, those methods are hardly

applicable to continuous action spaces. On the other hand, there are policy gradient methods

that learn a parameterised policy. As we know, the policy defines the behaviour of the agent in

certain situations. The policy is determined by parameters, and the parameter vector is notated

with 𝜃. The policy is explicitly given by 𝜋𝜃(𝑎|𝑠). The probability that action 𝑎 is taken at time

𝑡 depends on the current state 𝑠 of the environment and the parameters 𝜃 of the policy (Sutton

and Barto, 2018, p. 321f). This probability can be calculated using the following formula:

𝜋𝜃(𝑎|𝑠) = 𝑃𝑟(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃) (6)

The fundamental idea is to adjust this probability distribution in a way, that the actions that lead

to a higher expected return get a higher probability assigned. However, there are multiple

actions with a chance to be taken. This is called a stochastic policy, and an example is the

REINFORCE algorithm, we apply in this study. On the other hand, we have deterministic

policy gradient methods, such as DDPG, that define the actions deterministically. Hence given

a particular state and parameter vector, the algorithm outputs the action to take. In other words,

the probability for this action is equal to 1, whereas the probabilities for all other actions are 0.

A policy with a parameter vector could, for instance, be a neural network mapping states to

actions. In that case, the parameters 𝜃 of the policy are the weights of the neural network.

Learning then means enhancing the parameters that define the policy, such that a higher return

is expected. A value function might still be present in the algorithms, but in this case, it is not

4 Theoretic Introduction 19

used to estimate action values but to learn the policy parameters (Sutton and Barto, 2018, p.

231f).

To improve our policy, we investigate a scalar performance measure 𝐽(𝜃) for the policy

parameter. Performance is maximised by updating the policy with the approximate gradient

ascent in 𝐽:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝐽(𝜃𝑡)̂ (7)

This means we modify our policy towards the direction, that results in higher expected

performance. ∇𝐽(𝜃𝑡)̂ is not the exact gradient but a stochastic estimate whose expectation

approximates the actual gradient. 𝛼 is a step size parameter, called the learning rate, defining

the size of adjustment we apply to our policy (Sutton and Barto, 2018, p. 231f).

In our episodic case, we define performance as the state-value of our start state: 𝐽(𝜃) =

 𝑣𝜋𝜃
(𝑠0). The performance depends on both the selection of actions and the distribution of states

in which those selections are made. Both are influenced by the policy parameter (Sutton and

Barto, 2018, p. 324). Hence it gets difficult to change the policy parameter in a way that ensures

improvements through a better selection of actions. Employing the policy gradient theorem

(Sutton and Barto, 2018, p. 325), the problem can be theoretically reformulated:

∇𝐽(𝜃) = 𝐸 [∑ ∇ln𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺𝑡(𝜏)

𝑇

𝑡=0

] , 𝑤𝑖𝑡ℎ 𝐺𝑡(𝜏) = ∑ 𝛾𝑘−𝑡−1
𝑇

𝑘=𝑡+1
𝑅𝑘 (8)

This is a significant result. We can now approximate our gradient by sampling data with our

policy and calculating an expected value. The policy gradient method now has to deal with two

main aspects. First, sampling actions according to a particular policy and thereby generating

data. And secondly calculating the log probabilities of an action given a specific probability

distribution 𝜋𝜃(𝑎𝑡|𝑠𝑡).

4.2.1 REINFORCE
In our policy gradient algorithms, the policy is approximated with an artificial neural network

with parameter vector 𝜃. In the REINFORCE algorithms of Sutton and Barto (2018, p. 328f),

one episode of the game is played and the policy is updated afterwards. Our version is slightly

adjusted because we want to gather more experience before taking an update step. Therefore,

the algorithm is modified in a way, that it plays 𝑁 episodes of the game, creating a set of

trajectories 𝐷 = {𝜏𝑖}𝑖=1,…,𝑁, where 𝜏𝑖 represents one trajectory. Within this batch of games, the

agent acts upon policy 𝜋𝜃. After each game played, we know the total cost that occurred and

adjust the rewards for each action according to the feedback scheme suggested by

4 Theoretic Introduction 20

Oroojlooyjadid et al. (2017). The feedback scheme takes the teamplay of an agent with respect

to the total cost into account (section 5.1). Based on the experience generated, we take an update

step of our policy. As we can see in formula 8, the gradient is an expectation so that we can

estimate it with a sample mean of our created experience (Achaim, 2018, simple policy

gradient). To estimate the gradient, we use the set 𝐷 of played games:

∇𝐽(𝜃)̂ =
1

𝑁
∑ ∑ ∇ln𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺𝑡(

𝑇

𝑡=0

𝜏)
𝜏∈𝐷

 , 𝑤𝑖𝑡ℎ 𝐺𝑡(𝜏) = ∑ 𝛾𝑘−𝑡−1
𝑇

𝑘=𝑡+1
𝑅𝑘 (9)

Note that we use 𝐺𝑡(𝜏) for the return of a particular trajectory now, because we create multiple

trajectories and must introduce a notation to identify those. The pseudocode for our

REINFORCE algorithm is shown below. The main questions about sampling actions during the

game and calculating the logarithmic-probabilities have not been discussed yet. They differ in

between the discrete and continuous variant of the algorithm and will be introduced in the

following.

 Algorithm 1: REINFORCE: Pseudocode

1:

2:

3:

Input: a differentiable policy parameterisation 𝜋𝜃(𝑎|𝑠)

Algorithm parameter: step size 𝛼 > 0

Initialise policy parameter 𝜃

4:

5:

6:

Loop forever:

Generate N episodes: 𝑆0 𝐴0𝑅1𝑆1𝐴1𝑅2𝑆2 … 𝑆𝑇−1𝐴𝑇−1𝑅𝑇 , following 𝜋𝜃

Loop for each episode:

7: Loop for each step of the episode:

8: 𝑅𝑡 = calculate feedback (formula 14)

9: 𝐺𝑡(𝜏) = ∑ 𝛾𝑘−𝑡−1𝑇
𝑘=𝑡+1 𝑅𝑘, (calculate discounted rewards to go)

10: 𝜃 = 𝜃 + 𝛼
1

𝑁
∑ ∑ ∇ln𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺𝑡(𝜏)𝑇

𝑡=0𝜏∈𝐷 (take an update step)

4.2.1.1 REINFORCE for discrete action space

Within the REINFORCE algorithm for discrete action spaces the policy 𝜋𝜃(𝑎|𝑠) outputs the

probability for each of the possible actions depending on the state and the parameter vector. To

be precise, we output the logits for the possible actions. However, this is less important here as

it is just a technical thing to avoid giving to many boundaries to the neural network. The

interested reader is referred to Fahrmeir et al. (2016, p. 464). Those probabilities then

characterise a categorical probability distribution. When the agent interacts with the

environment, it uses the probability distribution to sample its action, leading to a new state.

4 Theoretic Introduction 21

Given the new state, our policy outputs another categorical probability distribution, which again

is used to sample the corresponding action. Given a probability distribution, the calculation of

logarithmic probabilities is straightforward. By randomly sampling the actions, we

automatically ensure that there is some degree of exploration happening because there are

several actions with a certain probability Sutton and Barto (2018, p. 328f).

4.2.1.2 REINFORCE with Gaussian policy

For the continuous REINFORCE algorithm, we require the same two steps. Given a specific

state, we derive a probability distribution that reflects the likelihood for the actions. We then

use that distribution to sample actions. In a continuous action space, we can simply change the

derived probability distribution from a categorical probability distribution to a normal

distribution. The policy does not longer output the probabilities for the actions but instead the

mean 𝜇(𝑠, 𝜃) and standard deviation 𝜎(𝑠, 𝜃) that characterise a normal distribution. This

approach is called a gaussian policy. Hence 𝜋𝜃(𝑎|𝑠) is characterised by the density function of

a normal (Gaussian) distribution:

𝜋𝜃(𝑎|𝑠) =
1

𝜎(𝑠, 𝜃)√2𝜋
exp (−

(𝑎 − 𝜇(𝑠, 𝜃))
2

2𝜎(𝑠, 𝜃)2
) (10)

Given the density function, we can easily calculate the logarithmic probabilities needed for our

gradients. The idea behind the gaussian policy is that the mean specifies the order quantity and

the standard deviation ensures the degree of exploration around the mean. As the training

evolves the standard deviation should decrease, so we get more precise about which action to

take. In this study, we only treat the classical BDG setting, where one item is traded within the

supply chain. However, this setting could be extended from a one-dimensional action space to

a two-dimensional action space by adding a second pair of mean and standard deviation as

output (Sutton and Barto, 2018, p. 357f).

4.2.2 Deep Deterministic Policy Gradient
The Deep Deterministic Policy Gradient (DDGP) is a method that combines advantages from

action-value and policy-gradient algorithms. It is only applicable to continuous action spaces.

The DDPG algorithm was introduced by Lillicrap et al. (2015). In the following, we rely on the

notations given by Achaim (2018, DDPG) in the OpenAI SpinningUp implementation of the

DDPG implementation.

The DDPG makes use of the action-value function 𝑄𝜋
∗ (𝑠, 𝑎) that we already introduced in

section 4.1. The little star indicates that we talk about the optimal action-value function

describing the value of state 𝑠 if we take action 𝑎 and follow the optimal policy 𝜋∗ hereinafter.

4 Theoretic Introduction 22

Note that we used 𝜋 to describe stochastic policies. For deterministic policies we use 𝜇(𝑠)

instead. To further simplify notations we will just use 𝑄∗(𝑠, 𝑎) for the optimal action-value

function in the following. The DDPG significantly differs from the already introduced

REINFORCE algorithms in a way that it deterministically derives the action given a certain

state. If we know the optimal action-value function 𝑄∗(𝑠, 𝑎) then a greedy policy 𝜇(𝑠) simply

derives the optimal action, given a specific state by taking the action with the highest Q-value

assigned: 𝜇(𝑠) = 𝑎∗(𝑠) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎). Hence our goal is to approximate the optimal

action-value function (Achaim, 2018, DDPG).

The starting point for our algorithm is the Bellman equation for the optimal action-value

function. The basic idea of the Bellman equation is that the value of a particular state is the

reward we expect to get from being there and taking action 𝑎, plus the value of wherever we

land next.

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′~ 𝑃(∗|𝑠,𝑎)[𝑟(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′)] (11)

The 𝑠′~𝑃(∗ |𝑠, 𝑎) indicates that the next state 𝑠’ is sampled from the environments transition

rules. The 𝑚𝑎𝑥 represents the fact that when we choose our action, we pick the action that leads

to the highest value. As we do not know the optimal bellman function 𝑄∗(𝑠, 𝑎), we train a neural

network 𝑄𝛿(𝑠, 𝑎), with parameters 𝛿, to be an approximator. We further consider a set 𝐷 of

transitions (𝑠, 𝑎 , 𝑟, 𝑠′, 𝑑), where 𝑑 indicates whether 𝑠′ is a terminal state (𝑑=1). If we reach a

terminal state, we cannot expect any additional rewards. During the learning process, the

bellman equation plays a vital role because we try to minimise the mean-squared bellman error

(MSBE). The MSBE roughly describes how close our approximator 𝑄𝛿 gets towards the

Bellman equation (Achaim, 2018, DDPG).

𝐿(𝛿, 𝐷) = 𝐸(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷 [(𝑄𝛿(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑚𝑎𝑥𝑎′𝑄𝛿(𝑠′, 𝑎′))
2

] (12)

The DDPG algorithm incorporates three features that slightly modify the loss function to

enhance training and should therefore be briefly introduced. (Achaim, 2018, DDPG).

1. Replay Buffers: In the DDPG, there is a storage for transitions. We call it replay-buffer

𝐷. When interacting with the environment, new transitions are added to the replay-

buffer. When it comes to learning, we take a small sample of transitions out of the buffer

and train our networks. This is done because many optimisation algorithms assume

independent and identically distributed samples. If we would take samples out of a

single run of the game, they are correlated because a particular state depends on the

previous ones (Achaim, 2018, DDPG).

4 Theoretic Introduction 23

2. Target Networks: The later term of the MSBE loss function is called the target: 𝑟 +

𝛾(1 − 𝑑)𝑚𝑎𝑥𝑎′𝑄𝛿(𝑠′, 𝑎′). When we are minimising the MSBE loss, we try to

approximate the target with our Q-function. The target depends on the same parameters

𝛿 that are trained, which leads to instabilities during the MSBE minimisation. As a

solution, we make use of a second network, the target network, which is a copy of the

main network. It uses a set of parameters 𝛿𝑡𝑎𝑟𝑔 which come close to 𝛿 but with a time

delay. In the DDPG algorithms, the target network is updated once per main network

update using Polyak averaging (Polyak, 1990): 𝛿𝑡𝑎𝑟𝑔 = 𝜏𝛿𝑡𝑎𝑟𝑔 + (1 − 𝜏)𝛿, with 𝜏 ∈

(0,1), but usually close to 0. The weights of the target networks slowly track the learned

network (Lillicrap et al., 2015)).

3. Maximum over continuous actions: We consider ourselves in a continuous action space.

Hence the calculation of the maximum over actions 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) is an expensive

subroutine because there is an infinite number of possible actions. As our action space

is continuous, we can assume a differentiable Q-function with respect to the actions.

This allows us to use a gradient-based learning rule for the policy 𝜇(𝑠). If we have a

differentiable Q-function, we can approximate 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) with 𝑄(𝑠, 𝜇(𝑠)). To

compute an action that approximately maximises 𝑄𝛿𝑡𝑎𝑟𝑔
 the DDPG implements a target

policy network 𝜇𝜃𝑡𝑎𝑟𝑔
. The target policy is learned the same way as the target Q-

function: by Polyak averaging the policy parameters during training (Achaim, 2018,

DDPG).

With those modifications, our MSBE loss function slightly changes towards:

𝐿(𝛿, 𝐷) = 𝐸(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷 [(𝑄𝛿(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑄𝛿𝑡𝑎𝑟𝑔
(𝑠′, 𝜇𝜃𝑡𝑎𝑟𝑔

(𝑠′)))
2

] (13)

Although the DDPG algorithm uses methods from Q-Learning, it remains a policy gradient

algorithm. We want to learn a policy 𝜇𝜃(𝑠) that deterministically gives the action that

maximises 𝑄𝛿(𝑠, 𝑎). Hence concerning the policy parameters, we can apply gradient ascent to

solve: 𝑚𝑎𝑥𝜃𝐸𝑠~𝐷[𝑄𝛿(𝑠, 𝜇𝜃(𝑠))] (Achaim, 2018, DDPG).

As our policy deterministically derives actions, we have to consider the exploration/exploitation

dilemma. During training, we artificially create noise that slightly changes the derived actions

to introduce exploration. As suggested in the DDPG paper of Lillicrap et al. (2015), we use the

Ornstein-Uhlenbeck noise (Uhlenbeck and Ornstein, 1930).

4 Theoretic Introduction 24

 Algorithm 2: Deep Deterministic Policy Gradient: Pseudocode

1: Input: initial policy parameters 𝜃, Q-function parameters 𝛿, empty replay buffer 𝐷

2: Set target parameters equal to the main parameters 𝜃𝑡𝑎𝑟𝑔 = 𝜃, 𝛿𝑡𝑎𝑟𝑔 = 𝛿

3: Repeat:

4: Observe state s and select action a = clip(𝜇𝜃(𝑠) + 𝜀, 𝑎𝑙𝑜𝑤 , 𝑎ℎ𝑖𝑔ℎ), 𝜀~𝑁𝑜𝑖𝑠𝑒

5: Execute 𝑎 in the environment

6: Observe next state 𝑠’, reward 𝑟, and done signal 𝑑 and save transition (𝑠, 𝑎, 𝑟, 𝑠’, 𝑑) in

temporary episode storage

7: If 𝑠’ is terminal, apply feedback scheme (formula 14) to transitions in episode storage,

reset environment state

8: Add transitions in episode storage to replay Buffer D and reset episode storage

9: if it is time to update then

10: Randomly sample a batch of transitions, 𝐵 = {(𝑠, 𝑎, 𝑟, 𝑠’, 𝑑)} from 𝐷

11: Compute targets: 𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑)𝑄𝛿𝑡𝑎𝑟𝑔
(𝑠′, 𝜇𝜃𝑡𝑎𝑟𝑔

(𝑠′))

12: Update Q-function by one step of gradient descent using:

∇𝛿

1

|𝐵|
∑ (𝑄𝛿(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))2

(𝑠,𝑎,𝑟,𝑠’,𝑑)∈𝐵

13: Update policy by one step of gradient ascent using

∇𝜃

1

|𝐵|
∑ 𝑄𝛿(𝑠, 𝜇𝜃(𝑠))

(𝑠,𝑎,𝑟,𝑠’,𝑑)∈𝐵

14: Update target networks

𝛿𝑡𝑎𝑟𝑔 = 𝜏𝛿𝑡𝑎𝑟𝑔 + (1 − 𝜏)𝛿

𝜃𝑡𝑎𝑟𝑔 = 𝜏𝜃𝑡𝑎𝑟𝑔 + (1 − 𝜏)𝜃

 end if

until convergence

The pseudocode of algorithm 2 is basically the DDPG algorithm given by Lillicrap et al. (2015)

and implemented by Achaim (2018, DDPG). They take a learning step after every single

interaction with the environment. Hence this algorithm is especially applicable to continuing

problems, where no clear end of an episode exists. In our episodic case, such an end exists.

Even more important is that our agents only know the total cost of the game after it ends. To

include this information into the design of the rewards, we have to store the transitions of one

episode of the game into an episode storage and wait until the episode is over. Afterwards, we

adjust the rewards with the feedback scheme and finally add all transitions of the episode

4 Theoretic Introduction 25

storage to the replay buffer. As the replay buffer is usually large (i.e. 1.000.000 transitions) and

the samples used for training are typically small (i.e. 32 transitions), we assume that our

adjustments do not have a significant influence on the performance. It is not likely that they

would have been chosen out of the replay buffer. We are not going to prove that formally, but

the learning progress seems to justify the assumption.

5 Experimental setup 26

5 Experimental setup

5.1 Algorithmic key components

We must define some key variables to create an environment that supports a reasonable

interaction with the intelligent agent. For instance, we must control the available information at

each agent, the design of rewards and architecture of our neural networks. Therefore, we briefly

introduce some of the critical components.

State variables: Each agent observes four variables. Consider agent 𝑖 at time 𝑡. The first

variable is the inventory level 𝐼𝐿𝑡
𝑖 that we already introduced. The second variable is the on-

order items 𝑂𝑂𝑡
𝑖. It describes the items that have been ordered from agent 𝑖 + 1 but not received

yet. The arriving order 𝐴𝑂𝑡
𝑖 describes the local demand reaching agent 𝑖 from its customer 𝑖 −

1. Downstream the supply chain the agent receives shipments 𝐴𝑆𝑡
𝑖 from his immediate supplier

𝑖 + 1. The variables 𝐴𝑂𝑡
1 and 𝐴𝑆𝑡

4 need special attention as they represent the tails of the supply

chain. The first variable describes the end-customer demand, whereas the latter describes the

production of the beer. In each period, every agent observes those four variables. Hence in

period 𝑡 agent 𝑖 has the historical observations 𝑜𝑡
𝑖 =

[(𝐼𝐿0
𝑖 , 𝑂𝑂0

𝑖 , 𝐴𝑂0
𝑖 , 𝐴𝑆0

𝑖), … , (𝐼𝐿𝑡
𝑖 , 𝑂𝑂𝑡

𝑖, 𝐴𝑂𝑡
𝑖 , 𝐴𝑆𝑡

𝑖)]. With our assumption of no information

sharing, we model the BDG as POMDP. In other words, each agent can only access its locally

observable state variables. However, after each time step the observation vector 𝑜𝑡
𝑖 grows. We

are going to use neural networks to predict the probabilities for taking a particular action. It is

inconvenient to handle variable input sizes for neural networks, so we will only use the m last

observations as the state variable. Concluding the state variable comprises 𝑆𝑡
𝑖 =

[(𝐼𝐿𝑡−𝑚+1
𝑖 , 𝑂𝑂𝑡−𝑚+1

𝑖 , 𝐴𝑂𝑡−𝑚+1
𝑖 , 𝐴𝑆𝑡−𝑚+1

𝑖), … , (𝐼𝐿𝑡
𝑖 , 𝑂𝑂𝑡

𝑖, 𝐴𝑂𝑡
𝑖, 𝐴𝑆𝑡

𝑖)] (Oroojlooyjadid et al.

(2017)).

The ANN architecture: There are many possibilities to design the structure of an artificial

neural network (ANN). As input, we use our state variable. The outputs depend on the algorithm

we are using. Within the discrete REINFORCE, it outputs the logistic probabilities for all

possible actions. Within continuous REINFORCE, it outputs the mean and standard deviation

that characterise a Gaussian policy. We experimented with different amounts and sizes of

hidden layers and used two hidden layers of sizer 32 in the end. The DDPG algorithm uses two

different neural network architectures. One for training the policy and one for estimating the Q-

function. Lillicrap et al. (2015) precisely describe both network architectures.

5 Experimental setup 27

Action Space: We consider both the discrete and continuous BDG. Our end-customer demand

gets up to eight items per period. Hence, we used an action space reaching from 0 to 16. For

the discrete BDG, we force the actions to be natural numbers. For the continuous version, real-

valued orders are allowed. Further increasing the action space did not lead to better results.

Reward Function: Consider an agent 𝑖 at time 𝑡 taking action 𝐴𝑡 . We have to think about how

we can assign a reasonable reward value 𝑅𝑡
𝑖 to his actions. After acting the state transitions from

𝑆𝑡
𝑖 to 𝑆𝑡+1

𝑖 . We can subsequently calculate the new inventory level 𝐼𝐿𝑡+1
𝑖 and further the

corresponding shortage and holding costs. The sum of both is considered as 𝑅𝑡
𝑖. In our setting,

we have transportation and order lead times. Hence the cost that occur in a certain period are

not directly related to the action taken in the previous period, but instead is a result of the actions

taken in prior periods. Nevertheless, as we defined our state variable to include the last m

periods, we still retain some information about the previously taken actions. Optimising for the

rewards 𝑅𝑡
𝑖 would lead to a minimisation of the local cost occurring at the agent. The local cost

minimisation would not necessarily lead to a minimum regarding the total cost of the entire

supply chain. The total cost is defined by ∑ ∑ 𝑅𝑡
𝑖𝑇

𝑡=1
4
𝑖=1 . The information about the cost of the

other agents is only shared after the game ends. To add this information into the design of the

rewards, we consider the feedback scheme of Oroojlooyjadid et al. (2017).

Feedback Scheme (Oroojlooyjadid et al., (2017): After the game ends, the information about

the total cost (total reward) is shared among the agents. The goal of our agent is to minimise

the total cost. Therefore we must include this information into the rewards the agent receives

for its actions. After one episode of the game is played, we update the rewards with the formula

suggested by Oroojlooyjadid et al. (2017):

𝑅𝑡
𝑖 = 𝑅𝑡

𝑖 +
𝛽𝑖

3
(𝜔 − 𝜗𝑖) (14)

Where 𝜗𝑖 =
1

𝑇
∑ 𝑅𝑡

𝑖𝑇
𝑡=1 is the average reward per time-step of agent 𝑖 and 𝜔 = ∑ 𝜗𝑖4

𝑖=1 is the

average reward per period. The factor 𝛽𝑖 is a regularisation coefficient. If it is too low, our agent

tries to minimise its own local cost. If it is too high, the focus lies on cost minimisation of the

co-players. Based on a grid search we choose 𝛽𝑖 = 100, as it seems to deliver good results. The

role and optimisation of this parameter should be discussed in future research.

Determining the value of m: As already mentioned the inclusion of the m past time steps is

crucial to include valuable information about previous states and hence for the design of

rewards. Thereby m is related to the order and shipment lead times. Oroojlooyjadid et al. (2017)

5 Experimental setup 28

suggest that m should ideally be chosen as large as the highest possible delay. This delay is the

sum of all shipment and order lead times: ∑ (𝑙𝑠ℎ𝑖𝑝
𝑗4

𝑗=1 + 𝑙𝑜𝑟𝑑𝑒𝑟
𝑗

). It is the time one order requires

to propagate from the retailer up the supply chain, getting produced and shipped down the

supply chain to the retailer again. However, a large m increases the size of our neural network

and hence slows down the training process. The selection of m results in a trade-off of accuracy

and computational resources. Ideally, it would be 15 in our setting, but due to limited

computational resources, we use m = 5. When using undiscounted rewards, increasing m only

led to small performance improvements (Appendix A).

5.2 Our experimental framework

One part of this thesis is to create a setting for further research regarding the beer distribution

game. To facilitate the use of the environment, it seems reasonable to meet some standardised

requirements. Several open-source frameworks facilitate the application of reinforcement

learning. The probably most used ones are part of OpenAI. With the Gym toolkit, OpenAI

standardises the formulation of environments in which RL-Agents can be trained. Furthermore,

many open-source frameworks that develop RL-algorithms can be easily tested with

environments implementing the Gym interface. Hence our BDG will meet those requirements.

For the implementation of the modules, we used open-source libraries, tutorials, and other

publicly available code. For the BDG environment, we got inspired by Orlov (2019). For the

REINFORCE agents, we followed the OpenAI SpinningUp implementation of the simple

policy gradient algorithm (Achaim, 2018, simple_pg.py). The DDPG algorithm is closely

related to the implementation of Tabor (2019, ddpg_torch.py). For the Sterman formula, we

used the R-implementation of Edali and Yasarcan (2014). We implemented the framework in

python 3.7.7 with PyTorch 1.4.0. The code runs on a local machine with a total RAM of 16 GB

and six cores, each with 2.20 GHz.

We create a modular software framework that allows the flexible experimentation with various

agents playing the game (see figure 4). Therefore, we identified four main components that

should work independently: (i) the BDG environment, (ii) the main training routine, (iii) a class

that simulates the behaviour of known policies and (iv) the intelligent agents. The BDG

environment includes the logic of the game and implements the OpenAI Gym interface. The

main script steps through the environment by passing the actions to the environment and

receiving the new states and rewards. It handles the batch creation and storage of trajectories.

The environment expects one action for each agent. Hence, we can flexibly decide how our

agents should behave. Their behaviour can be controlled by one of the known policies from

5 Experimental setup 29

literature or by one of the intelligent agents. For the intelligent agents, we created separate

classes that handle the learning procedure, loss calculation and action sampling according to

their current policy. Further, we implement an agent simulator class that includes a method to

derive actions according to the optimal base stock policy, random policy or sterman formula.

Figure 3: Software Architecture of the Experimental Framework

We implemented some unit tests to ensure whether our logic is correct. To see if our BDG

works correctly, we compare the total cost that occur to known values from the literature. For

the base stock policy, we rely on values given in Oroojlooyjadid et al. (2017). For the

simulation of human-like behaviour, we use values from Edali and Yasarcan (2014).

5.3 Training and Evaluation process

To understand how we conduct numerical experiments, we briefly describe the training and

evaluation process. We describe the scenario, where an RL algorithm controls the wholesaler

and the co-players follow a known policy from research. The logic for the REINFORCE and

DDPG algorithms is similar. We refer to them as intelligent algorithms in the following.

Training procedure: Within the main logic, we create our BDG environment and specify it as

discrete or continuous. In our implementation, we assigned the values 0 to 3 to the four agents

of our supply chain. We determine the index of the agent that is controlled by the RL-algorithm.

In our case, it is equal to 1 as the intelligent agent should play the wholesaler. With this index,

we can now request the action and observation space for our agent from the BDG environment.

We further create our intelligent agent and pass the possible action space to him. It is usually

16 representing orders reaching from 0…15 with natural numbers for the discrete and real-

5 Experimental setup 30

valued numbers for the continuous case. To define the behaviour of the other agents, we create

an agent simulator class and specify the policy of the co-players.

The training loop slightly differs for the REINFORCE and DDPG algorithm. For the

REINFORCE algorithm, each iteration of the training loop (epoch) comprises two steps. We

first play the game to gather experience, and we secondly update the policy, which represents

a learning step. To gather experience, we play a bunch of games (batch) where the intelligent

acts upon its current policy. The agent simulator calculates the actions of the co-players. After

each game, we adjust the reward of the agent with the feedback scheme (formula 14). We

further calculate the rewards-to-go (formula 3). When we have played some games and gathered

a certain amount of transitions (batch size), we take a learning step. The data from our batch is

passed to the REINFORCE agent to take one update step of his policy. This process is

repeatedly done until performance converges.

The procedure for the DDPG algorithm is slightly different because it uses a replay buffer.

Instead of gathering a certain amount of transitions, it plays only one game, applies the feedback

scheme and adds the transitions to the replay buffer. The DDPG takes a learning step after every

single step within the environment by sampling data out of the replay buffer. Hence the learning

steps are independent of the game endings.

Evaluation procedure: To evaluate the performance, we simply use our trained agents and let

them play 1000 rounds of the game. We use the mean of the total cost of the games as an

evaluation metric. We use the optimal base-stock policy by Clark and Scarf (1960), as an upper

performance baseline. We use the formula of Sterman (1989) to compare the performance of

our agent with the performance of simulated human behaviour. The human-like behaviour plays

a crucial role because when we assume that humans currently manage a supply chain, we are

interested in the cost reduction if we implement an intelligent agent.

6 Numerical Results 31

6 Numerical Results

Our framework allows each actor to follow its own policy. This leads to a variety of possible

policy constellations. Due to computational limitations, we only investigate the case where one

agent is a learning agent and all its co-players follow the same co-player policy. The learning

agent plays the role of the wholesaler. However, those experiments can be easily done for the

other agents or extended to multiple intelligent agents. We consider three types of policies for

the co-players: (i) a random policy, (ii) human-like (Sterman, 1989) and (iii) the base stock

policy.

To identify the different combinations, we introduce the notation of shape wholesaler policy-

co-player policy. For instance, DDPG-sterman represents the setup in which the DDPG

algorithm controls the wholesaler, whereas the co-players act upon the sterman formula.

We conduct the experiments for two demand distribution:

1. C(4,8) = In the classical demand distribution of Sterman (1989), the end-customer

orders 4 items in the first four periods and continuously 8 items afterwards.

2. U[0,8] = The demand is uniformly distributed between 0 and 8

We usually assume that our agents do not have information about the end-customer demand.

Anyhow, when the co-workers act randomly, we introduce some knowledge about the demand

distribution into the random policy. When we apply the classical demand distribution, the

randomly acting co-workers draw their actions uniformly from 0 to 15. When we investigate

the uniformly distributed demand, the randomly acting co-workers draw their actions from the

same distribution. Hence the orders are also uniformly distributed between 0 and 8. Enlarging

the upper boundary would increase the cost because the agents now regularly place orders that

exceed the possible end-customer demand. As a consequence, this leads to higher inventory

levels and holding cost. To avoid that the cost is artificially increased to make the algorithms

look better, we decided to infer the knowledge about the demand distribution. This information

only affects the randomly acting co-works, not the intelligent agents. They use their action space

as defined in section 5.1 and find reasonable policies on their own.

Demand 𝑐ℎ 𝑐𝑠 BS level

C(4,8) [0.5, 0.5, 0.5, 0.5] [1, 1, 1, 1] [32, 32, 32, 24]

U[0,8] [0.5, 0.5, 0.5, 0.5] [1, 1, 1, 1] [19, 20, 20, 14]

Table 1: Cost structure and base stock levels

6 Numerical Results 32

Furthermore, the optimal base stock levels depend on the demand distribution. Cost parameters

and base-stock levels for both distributions are shown in table 1. The calculation of optimal

base stock levels is a non-trivial question. We refer to Clark and Scarf (1960) and Chen et al.

(1999) for further information. Within this study, we rely on values that have been previously

used for those demand distributions (Oroojlooyjadid et al., 2017).

The BDG environment and the algorithms themselves include a variety of variables. Appendix

B contains a full list regarding the parameter selection. Those variables can directly influence

performance. Some of the key variables are introduced in section 5.1. We conducted a grid

search to evaluate certain parameter combinations to find out a promising setup for our

numerical experiments. The feedback mechanism includes a regularisation coefficient 𝛽.

According to Oroojlooyjadid et al. (2017), there is no simple rule to derive a value for 𝛽. Hence

we tried two values (10 and 100) for beta within the grid search. We further included the number

of observed periods 𝑚 (5 and 10) and the reward discount factor 𝛾 (1 and 0.95). We conducted

the grid search for the discrete version of the BDG under the classical demand distribution. We

choose 𝛽 = 100, 𝑚 = 5 𝑎𝑛𝑑 𝛾 = 1. A larger 𝑚 leads to better results, as more information is

included in the decision process. We still use m = 5 because a larger 𝑚 slows down the training

process. For different setups, there might be a better selection of those parameters, which is

subject of discussion. Appendix A shows the results of the grid search.

In the subsequent section, we take a look at the performance of our algorithms. We first consider

the case where our REINFORCE algorithm plays the discrete version of the game and then

have a closer look at the continuous variants.

6.1 Discrete REINFORCE algorithm

We trained the discrete REINFORCE agent for 1000 epochs under the classical and 1200

epochs under the uniform demand distribution. Although there still might be room for

improvement, we stopped training as we did not expect any major performance steps. We used

a batch size of 5000 and each game ended after 36 rounds. Hence one epoch includes 139

(⌈5000/36⌉ = 139) games played. Training for 1000 epochs contains the experience of 139

000 games. For the neural network, we used the Adam optimiser with a learning rate of 0.0001.

Under the classical demand distribution, we conducted three experiments with the discrete

REINFORCE algorithm. The wholesaler is played by the intelligent agent and his co-workers

acting upon one of the previously mentioned policies. Figure 5 displays the training process of

the REINFORCE-sterman setup. We see how the training process converges.

6 Numerical Results 33

Figure 4 Training process of the REINFORCE-sterman setup

Table 2 shows the results after training the agent for 1000 epochs. The rows indicate whether

the wholesaler was controlled by a known policy or our intelligent REINFORCE Agent. The

columns represent the behaviour of the co-workers. The base stock policy is optimal if all

players act according to it. Therefore, the cost of 180 is a lower bound. Note that under a

classical demand distribution, the system gets into a Nash equilibrium. All inventory levels are

0, and each agent only orders the locally observed demand. No agent has an incentive to show

different behaviour because this would subsequently lead to higher local and higher total cost.

The system remains at total expenses of 180 regardless of the length of the game. Hence for

longer games, it gets harder for our algorithms to approach the lower bound.

 Co-players policy

 classical uniform

wholesaler policy random base stock sterman random base stock sterman

random 1.900,2 1.668,4 1.426,1 1135,9 808,8 892,8

base_stock 3.037,9 180,0 3.664,5 1119,3 677,7 1172,4

Sterman 1.831,2 2.865,0 2.049,0 1130,9 962,6 1058,8

Rf_discrete 1.755,5 415,5 594,4 1148,4 804,2 871,1

% Gap to Sterm. -4,1% -85,5% -71,0% 1,6% -16,5% -17,7%

Table 2: Performance of the discrete REINFORCE algorithm

However, if the co-players act according to a base-stock policy and the wholesaler acts human-

like the cost increase to 2865. Something similar happens when all players act human-like, but

the wholesaler is applying the optimal base-stock policy (3664). If at least one player does not

act according to the base-stock policy, the cost is no longer optimal. In fact, we observe the

opposite effect. If not applied by all players, it leads to some of the highest costs observed in

our experiments. We would like to draw special attention to the last row because it indicates

6 Numerical Results 34

the cost reduction if the intelligent algorithm replaces a human-like wholesaler. In the case of

the co-players following the base stock policy, it leads to a cost reduction of 85,5%. If the co-

players act human-like the cost decreases by 71%. Hence if we assume that not all players act

according to the base stock policy, then implementing the REINFORCE Agent leads to a

significant cost reduction, when the end-customer demand is classical.

Under uniformly distributed end-customer demand, the problem is more complicated because

we introduce randomness. Table 2 shows the performance of our agents under the uniformly

distributed demand. The system with all players acting according to the base stock policy does

not get into the Nash equilibrium. It is a stochastic value now. Remember that we inserted the

knowledge about the demand distribution into the random policy. We draw demand and actions

from the same distribution, which leads to a random policy that already seems quite good. If

we replace a human-like wholesaler by our intelligent agent, we can reduce cost in the

REINFORCE-base stock (16,5%) and REINFORCE-sterman (17,7%) cases. If we have random

demand and randomly acting co-players, then the REINFORCE wholesaler does not learn a

strategy to reduce the cost further. In fact, the cost slightly increases by 1,6%. Compared to the

performance of a human-like wholesaler, there is a reasonable cost-reduction overall.

Nevertheless, when we replace the wholesaler by a random-policy instead of the RL-algorithm,

we get almost equally good results. One might question the investment in an intelligent RL-

agent when just randomly drawing actions reduces cost comparably well. However, for the

random-policy, we assumed to know the underlying demand distribution. The REINFORCE

agent, on the other hand, learns to react to the demand distribution on its own.

When we have a closer look at what the RL-agents learn, we notice that the agent approximately

orders the mean of the demand distribution. In the U[0,8] case, this is equal to 4 (Fahrmeir et

Figure 5: Cost reduction and mean of order quantities during the training process

6 Numerical Results 35

al., 2016). We see how the cost decreases while the agent approximates the mean of the demand

distribution within its orders (see figure 6).

6.2 Continuous policies

The continuous version of the BDG allows the placement of real-valued orders. The action

spaces basically remain the same, but orders can now take any value, not just natural numbers.

We no longer convert the order quantities calculated by policies known from the literature to

integers. This leads to slightly different benchmark values (see table 3). However, those values

are similar to those in the discrete case. Deviations are a result of rounding in the discrete case.

For the continuous version of the BDG, we applied the REINFORCE algorithm with gaussian

policy and the DDPG algorithm.

6.2.1 Reinforce with Gaussian policy
The continuous REINFORCE algorithm is applied together with a gaussian policy to handle

continuity. The sigma that is delivered by the neural network is activated with a Softplus

activation function. This activation function ensures that the sigma is positive. We observe

some instabilities during the training process, which seems to have numerical reasons. The

estimated variance gets so small that some of the log-probabilities reach infinity. Therefore, we

force the estimated sigma to a minimum value of 0.001 during the calculation of the log-

probabilities. We further apply gradient clipping and normalise the rewards to an [0,1] interval.

We also slightly change the algorithm in a way that when we created a batch of experience, we

take five consecutive update steps in a row. Those modifications stabilised learning. However,

as we can see in Table 3, the performance of the continuous REINFORCE (Rf-cont) is not as

good as the performance of the discrete REINFORCE, although we trained the continuous

version for 1000-5000 epochs. The varying duration of training is a result of a much slower

training process and later convergence. Due to computational limitations, we had to interrupt

the training process there. However, under the classical demand distribution, the continuous

REINFORCE algorithm reduces the cost by 74,6% when co-players act upon the base-stock

policy, and the intelligent algorithm replaces a human-like wholesaler (%Gap RF-Sterm.). The

cost reduction is 69,2% when playing with human-like co-players. We would like to draw

special attention to the performance of our algorithm with randomly acting co-players. The cost

increased by 176% and 68,2% for the classical and uniform demand distribution. Although we

did extend training up to 5000 epochs, we cannot observe convergence (Appendix C) and the

level of performance remains below the other algorithms.

6 Numerical Results 36

 Co-players policy

 classical uniform

wholesaler policy random base stock sterman random base stock sterman

random 1.815,6 1.277,5 1.319,5 1.191,2 821,5 899,3

base stock 2.996,3 180,0 3.696,0 1.189,1 683,2 1.193,0

sterman 1.775,8 2.906,3 2.046,2 1.189,5 972,4 1.045,6

RF-cont 4901,2 737,6 616,2 1.984,1 780,1 763,3

%Gap RF -Sterm. 176,0% -74,6% -69,2% 68,2% -19,8% -27,0%

DDPG 1.544,9 256,9 467,4524 2001,1 774,8 1.150,9

%Gap DDPG- Sterm. -13,0% -91,2% -77,2% 14,1% -20,3% 10,1%

Table 3: Performance of algorithms with continuous action space

6.2.2 Deep Deterministic Policy Gradient
The DDPG algorithm uses a replay buffer for learning. To fill the replay buffer, we introduce

a warm-up phase of 1200 games. During the warm-up phase, actions are randomly chosen, and

the transitions are added to the replay buffer. For the classical demand distribution, the DDPG

algorithm is trained for 5000 epochs. The DDPG algorithm decreases the cost significantly,

regardless of the policy applied by its co-players (Table 3). Especially within the DDPG-(base

stock) case, the DDPG agent seems to be approximating the optimal base stock cost of 180.

Compared to a human-like wholesaler, the intelligent agent can reduce cost by 91.2%. If the

co-players act upon a base-stock policy, the DDPG agent decreases cost by 77.2%. Under

uniformly distributed demand, we observe a slight cost increase when the DDPG plays with

randomly and human-like co-players (14,1%, 10,1%). When playing with base-stock co-players

cost are reduced by 20,3%. Overall, it seems like the DDPG algorithm delivers a strong

performance under the classical demand but has some difficulty when demand is uniformly

distributed.

6.3 Benchmarks from literature and comparison of algorithms

It is reasonable to compare our results with the results obtained by Oroojlooyjadid et al. (2017)

with the DQN Network. We closely followed their methodology but applied a different class

of algorithms. However, to draw a fair comparison, it is essential to check whether we use the

same benchmarks. Oroojlooyjadid et al. (2017) also implement the formula of Sterman (1989).

Given the information in their paper, it was not possible to recreate the exact scores they are

using in their web-application. Hence we based our implementation on the mathematical model

and its corresponding R-implementation of Edali and Yasarcan (2014). The minor differences

should be a result of the choice of some parameters and a slightly different calculation of

expected demands. Whereas they use the mean of observed demands, we apply the original

exponential smoothing proposed by Sterman (1989). The sterman formula includes some

6 Numerical Results 37

parameters reflecting how the human-like player over and underreacts to certain situations. By

adjusting those parameters, we can directly influence the cost. A game of 36 rounds with only

human-like players leads to a total cost of 2208,5 in Oroojlooyjadid et al. (2017). To get similar

cost we used alpha = 0.5 and beta = 1 in the sterman formula, which leads to the total cost of

2049. However, it was not possible to achieve the exact same values, so comparing the

performance concerning the sterman formula should be done with caution.

 Table 4 and 5 display the performance of our three algorithms, together with the performance

of the DQN algorithm implemented by Oroojlooyjadid et al. (2017). They trained their DQN

algorithms for at least 60 000 episodes which significantly exceeds the 5000 episodes of our

DDPG algorithm. Our REINFORCE (RF) algorithms are trained in between 1000 and 5000

epochs including the information of 139 000 – 69 5000 episodes of the game. With more

training and an optimised parameter selection, our algorithms might even further improve.

Table 4 shows the performance when the co-players act according to the base stock policy.

Oroojlooyjadid et al. (2017) normalised the cost. Hence the absolute values do not have a

meaningful interpretation.

Table 4: Performance comparison with co-players following the base stock (bs) policy

We draw special attention to the “Gap” column. It represents the actual performance gap. The

*-bs column represents the cost occurring when one of the intelligent algorithms plays the

wholesaler, and the co-players follow the base stock policy. The second column represents the

cost arising when we replace the wholesaler by the base stock policy. The gap column

represents the difference between those two values. It can be positive or negative, reflecting the

fact that the algorithms might perform better or worse than the values in the second column.

In all cases, the gap is positive indicating that our algorithms perform worse than the bs-bs

policy. This is reasonable as the base stock policy is optimal and we use its cost as a lower

bound. The gap implies how close we get towards this lower bound. For the classical demand

distribution, we see that the DQN and the DDPG algorithm outperform the discrete

REINFORCE (RF-discrete) and continuous REINFORCE (RF-cont.). The gap of 38 % and

42% indicate that the DQN and DDPG perform similarly well. The discrete REINFORCE with

a gap of 130% and the continuous REINFORCE with a gap of 309% are not compatible. When

 Classical Uniform

Wholesaler *-bs bs-bs Gap *-bs bs-bs Gap

DQN 0,47 0,34 38,24% 960,4 799,2 20,18%

RF-discrete 415,5 180 130,85% 804,2 677,7 18,66%

RF-cont. 737,6 180 309,781% 780,1 683,2 14,18%

DDPG 256,9 180 42,72% 774,8 683,2 13,40%

6 Numerical Results 38

we take a look at the uniform distribution, we see that the policy-gradient methods (18,66%,

14,18%, 13,4%) outperform the action-value method (DQN = 20.18%). Whereas the

continuous REINFORCE algorithm delivered the weakest performance under the classical

demand distribution, it shows the second-best performance under uniformly distributed

demand. Overall, the policy-gradient methods seem to handle uniformly distributed demand

better when playing with base stock co-players. It is also noticeable that the DDPG algorithm

performs on the same level as the DQN, although it was only trained for 5000 episodes whereas

the DQN was trained for 60.000 episodes.

Table 5 displays the performance when the co-players act human-like. The *-sterm column

represents the performance when an intelligent agent plays the wholesaler, and the co-player

follow the sterman formula. The bs-sterm column monitors the performance when a base-stock

policy replaces the wholesaler. Under the classical demand distribution, we observe that the

policy-gradient methods outperform the DQN algorithm. The DDPG Method performs best

with a cost reduction of 87% compared to a bs-sterm setup. When the demand distribution

changes, we observe the opposite scenario. The DQN algorithm outperforms the policy-

gradient algorithms. The continuous REINFORCE variant is the only policy-gradient method

that is compatible with the DQN in this scenario. The DDPG performs best under classical

demand but is the weakest performer when demand is uniformly distributed.

 Classical Uniform

Wholesaler *-sterm bs-sterm Gap *-sterm bs-sterm Gap

DQN 2,85 8,17 -65,12% 5,9 9,53 -38,09%

Rf-discrete 594,4 3.664,5 -83,78% 871,1 1.172,3680 -25,70%

Rf-cont 616,2 3.696,0 -83,33% 763,3 1.193,0 -36,02%

DDPG 467,5 3.696,0 -87,35% 1.150,9 1.193,0 -3,53%

Table 5: Performance comparison with co-players following the sterman formula

Overall policy gradient methods can compete with the action-value based DQN approach of

Oroojlooyjadid et al. (2017). Especially the DDPG agent and DQN agent perform comparably

well. The simple policy gradient method REINFORCE also delivers a highly competitive

performance except for the case when the co-players apply the optimal base-stock policy, and

the demand is classical. Each algorithm seems to have some strengths and weaknesses

depending on the particular setup comprising end-customer demand and co-player policies.

7 Conclusion 39

7 Conclusion

We developed a framework to test different reinforcement learning algorithms for the Beer

Distribution Game (BDG). The game has a variety of features that complicate the problem. It

only has partially observable states, the actors play cooperatively, and there is no information

sharing during the game. Oroojlooyjadid et al. (2017) introduced a DQN algorithm addressing

those complicating features. We implemented some of their mechanisms and applied them

together with policy-gradient reinforcement learning algorithms. We further extended the setup

to a continuous variant of the game. Hence action and state-space get real-valued. The

framework allows various configurations, where every single actor within the supply chain can

individually follow its own policy. Thereby we have options to choose among one of the known

policies from literature: (i) the optimal base-stock policy, (ii) human-like behaviour and (iii) a

random policy. We can also replace every actor with an intelligent RL-algorithm. Within the

scope of this study, we limited ourselves to the case where only one actor of the supply chain

is a learning agent. Nevertheless, we suggest investigating multi-agent learning based on our

framework.

In our numerical experiments, the RL-algorithms replaced the wholesaler, and its co-players

followed one of the three well-known policies mentioned above. Thereby the agents faced two

different end-customer demand distributions. The first demand distribution is constant after

some time and was defined by Sterman (1989). The second demand distribution is uniformly

distributed within a certain range. We employed a discrete REINFORCE and a continuous

REINFORCE variant, as well as the Deep Deterministic Policy Gradient (DDPG). All methods

are capable of finding ordering policies that lead to a significant cost reduction. However, the

algorithms are quite sensitive to specific settings. Considering the classical demand distribution

defined by Sterman (1989) and a human-like supply chain, then replacing the wholesaler by our

intelligent agents leads to a cost reduction of at least 69%. If we examine the same setting with

the uniform demand distribution, only the REINFORCE algorithms lead to a cost reduction.

The DDPG algorithm even slightly increases the cost. We suggest a closer investigation of the

reasons why those algorithms have strengths and weaknesses under different demand

distributions. Nevertheless, in comparison to the DQN algorithm proposed by Oroojlooyjadid

et al. (2017), our algorithms perform comparably well. Primarily the DDPG agent reaches the

same level of performance, although either one has some benefits depending on the particular

setup. Due to computational limitations, the training time and parameter selection was

restricted. Hence there still might be upward potential that remains unexplored.

7 Conclusion 40

Policy-gradient methods have a variety of features that favour exciting research questions.

They, for instance, can be used to improve supply chains trading multiple items. We

demonstrated that they could significantly reduce cost and deliver similar performances as

action-value approaches when solving the beer distribution game. With this thesis, we created

a starting point for future research regarding policy-gradient algorithms in serial supply chains.

References: 41

References:

Achaim, J. (2018). SpinningUp2018, DDPG. Retrieved from:

https://spinningup.openai.com/en/latest/algorithms/ddpg.html#why-these-papers.

Retrieved on: 25.08.2020.

Achaim, J. (2018). SpinningUp2018: simple_pg.py. Retrieved from:

https://github.com/openai/spinningup/blob/master/spinup/examples/pytorch/pg_math/

1_simple_pg.py. Retrieved on: 20.06.2020.

Achaim, J. (2018). SpinningUp2018, simple policy gradient. Retrieved from:

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#deriving-the-

simplest-policy-gradient. Retrieved on: 28.05.2020.

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of

decentralised control of Markov decision processes. Mathematics of operations

research, 27(4), 819-840.

Chaharsooghi, S. K., Heydari, J., & Zegordi, S. H. (2008). A reinforcement learning model

for supply chain ordering management: An application to the beer game. Decision

Support Systems, 45(4), 949-959.

Chen, F. (1999). Decentralised supply chains subject to information delays. Management

Science, 45(8), 1076-1090.

Claus, C. & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative

multi-agent systems. AAAI/IAAI. 746–752.

Clark, A. J. & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem.

Management science, 6 (4):475–490.

Eatwell, J., Milgate, M., & Newman, P. (Eds.). (1989). Game theory. Springer.

Edali, M., & Yasarcan, H. (2014). A mathematical model of the beer game. Journal of

Artificial Societies and Social Simulation, 17(4), 2.

Edali, M., & Yasarcan, H. (2014). R-Implementation: A Mathematical Model of The Beer

Game. (Version 1.0.0). CoMSES Computational Model Library. Retrieved from:

https://www.comses.net/codebases/4161/releases/1.0.0/, Retrieved on 08.07.2020.

https://spinningup.openai.com/en/latest/algorithms/ddpg.html#why-these-papers
https://github.com/openai/spinningup/blob/master/spinup/examples/pytorch/pg_math/1_simple_pg.py
https://github.com/openai/spinningup/blob/master/spinup/examples/pytorch/pg_math/1_simple_pg.py
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#deriving-the-simplest-policy-gradient
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#deriving-the-simplest-policy-gradient
https://www.comses.net/codebases/4161/releases/1.0.0/

References: 42

Fahrmeir, L., Heumann, C., Künstler, R., Pigeot, I., & Tutz, G. (2016). Statistik: Der weg zur

Datenanalyse. Springer-Verlag.

Giannoccaro, I., & Pontrandolfo, P. (2002). Inventory management in supply chains: a

reinforcement learning approach. International Journal of Production

Economics, 78(2), 153-161.

Graves, S. C. (1985). A multi-echelon inventory model for a repairable item with one-for-one

replenishment. Management science, 31(10), 1247-1256.

Kimbrough, S. O., Wu, D. J., & Zhong, F. (2002). Computers play the beer game: can

artificial agents manage supply chains?. Decision support systems, 33(3), 323-333.

Lee, H L., Padmanabhan, V. & Whang, S. (1997). Information distortion in a supply chain:

The bullwhip effect. Management science. 43.4: 546-558.

Li., Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D.

(2015). Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971.

Martinez-Moyano, I. J., Rahn, R. J., & Spencer, R. (2005). The beer game: its history and rule

changes. Proceedings of the 23rd International Conference of the System Dynamics

Society.

Orlov, A. (2019). beer-game-env. Retrieved from https://github.com/orlov-ai/beer-game-env,

Retrieved at 25.06.2020

Oroojlooyjadid, A., Nazari, M., Snyder, L. & Takáč, M. (2017). A Deep Q-Network for the

Beer Game: A Deep Reinforcement Learning algorithm to Solve Inventory

Optimisation Problems. arXiv preprint arXiv:1708.05924.

Peters, H. (2015). Game theory: a multi-levelled approach. Springer.

Polyak, B. T. (1990). A new method of stochastic approximation type. Avtomatika i

Telemekhanika, 51(7): 98–107.

Ponte, B., Fernández, I., Rosillo, R., Parreño, J., & García, N. (2016). Supply chain

collaboration: A Game-theoretic approach to profit allocation. Journal of Industrial

Engineering and Management, 9(5), 1020-1034.

https://github.com/orlov-ai/beer-game-env

References: 43

Sterman, J. D. (1989). Modelling managerial behaviour: Misperceptions of feedback in a

dynamic decision making experiment. Management Science, 35(3):321–339.

Strozzi, F., Bosch, J., & Zaldivar, J. M. (2007). Beer game order policy optimisation under

changing customer demand. Decision Support Systems, 42(4), 2153-2163.

Tabor, P. (2018). ddpg_torch.py, Retrieved from https://github.com/philtabor/Youtube-Code-

Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/lunar-

lander/pytorch/ddpg_torch.py, Retrieved at 02.08.2020

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the Brownian motion. Physical

review, 36(5), 823.d

Wu, D. Y., & Katok, E. (2006). Learning, communication, and the bullwhip effect. Journal of

operations management, 24(6), 839-850.

https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/lunar-lander/pytorch/ddpg_torch.py
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/lunar-lander/pytorch/ddpg_torch.py
https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/PolicyGradient/DDPG/lunar-lander/pytorch/ddpg_torch.py

A Appendix 44

A Appendix

n_observed
rounds 5

n_observed
rounds 10

 discount discount
beta 1 0.95 beta 1 0.95

10 743,455 854,904 10 859,355 525,1535

100 635,42 1579,036 100 514,109 537,7645

B Appendix

BDG Parameter Selection

Cost hold [0.5, 0.5, 0.5, 0.5]

Cost stock [1, 1, 1, 1]

Lship [2,2,2,2]

L lead [2,2,2,1]

Demand_dist {classical, uniform_0_8}

M (n_observed_periods) 5

N (n_turns_per_game) 36

Discrete {true, false}

Action_Space 16

Parameters for REINFORCE Training

Learning_rate 0.0001

Sizes [20, 32,32] Input Size & Sizes of hidden layers

n_actions 16 Size of output

Batch_size 5000

Beta 100 Feedback (Formula 14)

Gamma 1 Reward (Formula 3)

Parameters for DDPG Training:

Alpha 0.000025 Learning rate actor network

Beta 0.00025 Learning rate critic network

Tau 0.001

Batch_size 32

Layer1_size 400

Layer2_size 300

C Appendix 45

C Appendix

Training process of the continuous REINFORCE-Random setup. No convergence observed

after 5000 training epochs

D Appendix

We trained the REINFORCE with gaussian policy under classical demand and co-players

following the Sterman formula. On the right figure the continuous orders have been

mathematically rounded, whereas on the left the continuous version of the game was played

(no rounding). When evaluating both algorithms the continuous REINFORCE leads to cost of

616 and the rounded continuous REINFORCE leads to cost of 636.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	2 The Beer Distribution Game
	3 Literature Review
	3.1 Current State of the Art
	3.2 Our Contribution

	4 Theoretic Introduction
	4.1 Introduction to Reinforcement Learning
	4.2 Policy-gradient algorithms
	4.2.1 REINFORCE
	4.2.1.1 REINFORCE for discrete action space
	4.2.1.2 REINFORCE with Gaussian policy

	4.2.2 Deep Deterministic Policy Gradient

	5 Experimental setup
	5.1 Algorithmic key components
	5.2 Our experimental framework
	5.3 Training and Evaluation process

	6 Numerical Results
	6.1 Discrete REINFORCE algorithm
	6.2 Continuous policies
	6.2.1 Reinforce with Gaussian policy
	6.2.2 Deep Deterministic Policy Gradient

	6.3 Benchmarks from literature and comparison of algorithms

	7 Conclusion
	References:
	A Appendix
	B Appendix
	C Appendix
	D Appendix

